6.已知橢圓C:$\frac{{x}^{2}}{^{2}}$+$\frac{{y}^{2}}{{a}^{2}}$=1(a>b>0)的離心率為$\frac{\sqrt{3}}{2}$,橢圓C的長(zhǎng)軸長(zhǎng)為4.
(1)求橢圓C的方程;
(2)已知直線l:y=kx+$\sqrt{3}$與橢圓C交于A,B兩點(diǎn),是否存在實(shí)數(shù)k使得以線段AB為直徑的圓恰好經(jīng)過(guò)坐標(biāo)原點(diǎn)O?若存在,求出k的值;若不存在,請(qǐng)說(shuō)明理由.

分析 (1)設(shè)橢圓的焦半距為c,則由題設(shè),得:$\left\{\begin{array}{l}2a=4\\ e=\frac{c}{a}=\frac{\sqrt{3}}{2}\end{array}\right.$,解得a,b,c值,可得橢圓C的方程;
(2)設(shè)點(diǎn)A(x1,y1),B(x2,y2),將直線l 的方程y=kx+$\sqrt{3}$代入$\frac{y2}{4}$+x2=1,利用韋達(dá)定理,及向量垂直的充要條件,可求出滿足條件的k值.

解答 解:(1)設(shè)橢圓的焦半距為c,則由題設(shè),得:$\left\{\begin{array}{l}2a=4\\ e=\frac{c}{a}=\frac{\sqrt{3}}{2}\end{array}\right.$,
解得$\left\{\begin{array}{l}a=2\\ c=\sqrt{3}\end{array}\right.$所以b2=a2-c2=4-3=1,
故所求橢圓C的方程為$\frac{{y}^{2}}{4}$+x2=1.
(2)存在實(shí)數(shù)k使得以線段AB為直徑的圓恰好經(jīng)過(guò)坐標(biāo)原點(diǎn)O.
理由如下:
設(shè)點(diǎn)A(x1,y1),B(x2,y2),
將直線l 的方程y=kx+$\sqrt{3}$代入$\frac{y2}{4}$+x2=1,
并整理,得(k2+4)x2+2 $\sqrt{3}$kx-1=0.(*)
則x1+x2=-$\frac{2\sqrt{3}k}{{k}^{2}+4}$,x1x2=-$\frac{1}{{k}^{2}+4}$.
因?yàn)橐跃段AB為直徑的圓恰好經(jīng)過(guò)坐標(biāo)原點(diǎn)O,
所以$\overrightarrow{OA}$•$\overrightarrow{OB}$=0,即x1x2+y1y2=0.
又y1y2=k2x1x2+$\sqrt{3}$k(x1+x2)+3,
于是-$\frac{1+{k}^{2}}{{k}^{2}+4}$-$\frac{6{k}^{2}}{{k}^{2}+4}$+3=0,解得k=±$\frac{\sqrt{11}}{2}$,
經(jīng)檢驗(yàn)知:此時(shí)(*)式的△>0,符合題意.
所以當(dāng)k=±$\frac{\sqrt{11}}{2}$時(shí),以線段AB為直徑的圓恰好經(jīng)過(guò)坐標(biāo)原點(diǎn)O.

點(diǎn)評(píng) 本題考查的知識(shí)點(diǎn)是橢圓的標(biāo)準(zhǔn)方程,直線與圓錐曲線的關(guān)系,向量垂直的充要條件,難度中檔.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.寫(xiě)出與下列各角終邊相同的角的集合,并判斷它們分別為第幾象限的角.
(1)65°;
(2)120°;
(3)-125°;
(4)300°.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.已知傾斜角為$\frac{2π}{3}$的直線l過(guò)拋物線y=$\frac{1}{4}$x2的焦點(diǎn),則直線l被圓x2+y2+4y-5=0截得的弦長(zhǎng)為3$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.已知向量$\overrightarrow a=(4,5cos(α+\;\frac{π}{6})),\overrightarrow b=(3,-4tan(α+\frac{π}{6})),\;α∈(0,\frac{π}{2}),\;\overrightarrow a⊥\overrightarrow b$,
(1)求|$\overrightarrow a-2\overrightarrow b|$;
(2)求$sin(2α+\frac{π}{12})$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的左、右焦點(diǎn)分別是F1,F(xiàn)2,離心率為$\frac{{\sqrt{3}}}{2}$,過(guò)F1且垂直于x軸的直線被橢圓C截得的線段長(zhǎng)為1.
(Ⅰ)求橢圓C的方程;
(Ⅱ)點(diǎn)P是橢圓C上除長(zhǎng)軸端點(diǎn)外的任一點(diǎn),連接PF1,PF2.設(shè)∠F1PF2的角平分線PM交C的長(zhǎng)軸于點(diǎn)M(m,0),求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{^{2}}$=1(a>b>0)的右頂點(diǎn),上頂點(diǎn)分別為M、N,過(guò)其左焦點(diǎn)F作直線l垂直于x軸,且與橢圓在第二象限交于點(diǎn)P,$\overrightarrow{MN}$=λ$\overrightarrow{OP}$
(1)求證:a=$\sqrt$;
(2)若橢圓的弦AB過(guò)點(diǎn)E(2,0)并與坐標(biāo)軸不垂直,設(shè)點(diǎn)A關(guān)于x軸的對(duì)稱(chēng)點(diǎn)A,直線A1B與x軸交于點(diǎn)R(5,0),求橢圓C的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.已知cosxcos(x+y)+sinxsin(x+y)=-$\frac{3}{5}$,y是第二象限角,則tan2y=$\frac{24}{7}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.已知:a、b、c∈R+,a+b+c=1,求a2+b2+c2的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.已知數(shù)列{an}是遞增數(shù)列,且滿足a3•a5=16,a2+a6=10.
(Ⅰ)若{an}是等差數(shù)列,求數(shù)列{an}的通項(xiàng)公式及前n項(xiàng)和Sn;
(Ⅱ)若{an}是等比數(shù)列,若bn=$\sqrt{a_n}$,求數(shù)列{bn}的前7項(xiàng)的積T7

查看答案和解析>>

同步練習(xí)冊(cè)答案