如圖所示,在△ABC中,∠B=60°,∠C=45°,高AD=
3
,在∠BAC內(nèi)作射線AM交BC于點M,求BM<1的概率.
分析:利用條件確定滿足BM<1對應的測度,然后利用幾何概型公式求概率.
解答:解:因為∠B=60?,∠C=45?,所以∠BAC=75?
在Rt△ABD中,AD=
3
,∠B=60?,所以BD=
AD
tan60?
=1,∠BAD=30?

即事件N為“在∠BAC內(nèi)作射線AM交BC于點M,使BM<1”,
則可得∠BAM<∠BAD時 事件N發(fā)生,
由幾何概型的概率公式得P(N)=
30?
75?
=
2
5
點評:本題主要考查了幾何概型的概率公式,將所求的概率進行等價轉(zhuǎn)化為等價的幾何測度,是解決幾何概型問題的關鍵.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖所示,在△ABC,已知AB=
4
6
3
cosB=
6
6
,AC邊上的中線BD=
5
,求:
(1)BC的長度;
(2)sinA的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖所示,在△ABC中,點D是邊AB的中點,則向量
DC
=( 。
A、
1
2
BA
+
BC
B、
1
2
BA
-
BC
C、-
1
2
BA
-
BC
D、-
1
2
BA
+
BC

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖所示,在△ABC中,∠B=60°,∠C=45°,高AD=
3
,在∠BAC內(nèi)作射線AM交BC于點M,則BM<1的概率為( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖所示,在△ABC中,∠BAC=90°,∠ABC=60°,AD⊥BC于D,則
AD
=( 。

查看答案和解析>>

同步練習冊答案