A. | $\frac{2}{3}$ | B. | $\frac{1}{2}$ | C. | $\frac{3}{4}$ | D. | $\frac{8}{9}$ |
分析 設(shè)直線$x=-\frac{4}{3}a$交x軸于點M,利用△F1PF2是底角為30°的等腰三角形,可得|PF1|=|F1F2|,且|PF1|=2|F1M|,根據(jù)P為直線x=$-\frac{4}{3}a$上一點,建立方程$2(-c+\frac{4}{3}a)=2c$,由此可求橢圓的離心率.
解答 解:設(shè)直線$x=-\frac{4}{3}a$交x軸于點M,
∵△F1PF2是底角為30°的等腰三角形,
∴∠PF1F2=120°,|PF1|=|F1F2|,且|PF1|=2|F1M|.
∵P為直線x=$-\frac{4}{3}a$上一點,
∴$2(-c+\frac{4}{3}a)=2c$,解得3c=2a,
∴橢圓C的離心率e=$\frac{c}{a}$=$\frac{2}{3}$.
故選:A.
點評 本題考查橢圓的幾何性質(zhì),解題的關(guān)鍵是確定幾何量之間的關(guān)系,屬于基礎(chǔ)題.
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 3 | B. | 6 | C. | 9 | D. | 12 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | {0,1} | B. | {-1,0} | C. | {0} | D. | {-1,0,1} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $g(x)=\sqrt{3}sin\frac{x}{2}-1$ | B. | $g(x)=\sqrt{3}sin\frac{x}{2}+1$ | C. | $g(x)=\sqrt{3}sin\frac{{{π^2}x}}{2}-1$ | D. | $g(x)=\sqrt{3}sin\frac{{{π^2}x}}{2}+1$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com