16.已知sinθ,cosθ是關(guān)于x的方程x2+ax-a=0(a∈R)的兩根.
(1)求sin3θ+cos3θ的值;
(2)求tanθ+$\frac{1}{tanθ}$的值.

分析 (1)依題意,由△≥0,可求得a的取值范圍,利用韋達(dá)定理與三角函數(shù)間的關(guān)系可求得a=sinθ+cosθ=sinθcosθ=1-$\sqrt{2}$,從而可求sin3θ+cos3θ的值;
(2)利用誘導(dǎo)公式,將所求關(guān)系式中的“切”化“弦”,通分整理,將sinθ+cosθ=sinθcosθ代入可得答案.

解答 解:依題意,△=a2+4a≥0,解得a≥0或a≤-4,
又$\left\{\begin{array}{l}sinθ+cosθ=-a\\ sinθ•cosθ=-a\end{array}\right.$,
所以(sinθ+cosθ)2=1+2sinθcosθ,即a2+2a-1=0,解得a=$-1+\sqrt{2}$或a=-1-$\sqrt{2}$(舍去),
因此sinθ+cosθ=sinθcosθ=$\sqrt{2}-1$.
(1)sin3θ+cos3θ=(sinθ+cosθ)(1-sinθcosθ)
=($\sqrt{2}-1$)[1-($\sqrt{2}-1$)]=6-4$\sqrt{2}-1$.
(2)tanθ+$\frac{1}{tanθ}$=$\frac{sinθ}{cosθ}$+$\frac{cosθ}{sinθ}$=$\frac{1}{sinθcosθ}$=$\frac{1}{\sqrt{2}-1}$=$\sqrt{2}+1$.

點評 本題考查同角三角函數(shù)基本關(guān)系的運用,考查韋達(dá)定理的應(yīng)用,求得sinθ+cosθ=sinθcosθ的值是關(guān)鍵,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知數(shù)列{an}的前n項和為Sn,且Sn+2=2an,且數(shù)列{bn}滿足b1=1,bn+1=bn+2.
(1)求數(shù)列{an},{bn}的通項公式;
(2)設(shè)cn=$\frac{1-(-1)^{n}}{2}$an+$\frac{1+(-1)^{n}}{2}$bn,求數(shù)列{cn}的前2n項和T2n;
(3)求數(shù)列{an•bn}的前n項和Rn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知函數(shù)y=sin(2x-$\frac{π}{6}$).
(1)求函數(shù)f(x)的最小正周期和圖象的對稱軸方程;
(2)求函數(shù)f(x)在區(qū)間[-$\frac{π}{12}$,$\frac{π}{2}$]上的值域;
(3)由y=sinx的圖象經(jīng)怎樣的變換可以得到該函數(shù)的圖象?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知數(shù)列{an}的前n項和為Sn,且a1=10,an+1=9Sn+10.
(Ⅰ)求證:{an}是等比數(shù)列;
(Ⅱ)設(shè)bn=$\frac{2}{(lg{a}_{n})(lg{a}_{n+1})}$,求數(shù)列{bn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知數(shù)列{an}是等比數(shù)列an>0若a2,a48是方程2x2一7x+6=0兩根,則a1•a2•a25•a48•a49=9$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.橢圓C的左、右焦點為F1(-1,0)、F2(1,0),且點P(1,$\frac{2\sqrt{3}}{3}$)在橢圓C上.
(1)求橢圓C的方程;
(2)設(shè)過F1的動直線l交橢圓C于A,B兩點,求△F2AB面積的最大值及面積最大時直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的長軸被圓x2+y2=b2與x軸的兩個交點三等分,則橢圓的離心率是(  )
A.$\frac{1}{2}$B.$\frac{\sqrt{2}}{2}$C.$\frac{\sqrt{3}}{3}$D.$\frac{2\sqrt{2}}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知數(shù)列{an}和{bn}滿足an=log2bn(n∈N*),Sn為等差數(shù)列{an}的前n項和,且a1=1,b4=4b2
(1)求an與bn;
(2)設(shè)cn=$\frac{1}{{S}_{n}}+\frac{1}{_{n}}$,記數(shù)列{cn}的前n項和為Tn,求證:$\frac{3}{2}$≤Tn<3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.雙曲線${x^2}-\frac{y^2}{m}=1$的離心率大于$\sqrt{2}$,則( 。
A.$m>\frac{1}{2}$B.m≥1C.m>1D.m>2

查看答案和解析>>

同步練習(xí)冊答案