【答案】
分析:(I)利用導(dǎo)數(shù)的運(yùn)算法則即可得出f′(x).①當(dāng)t>1時(shí),分當(dāng)x∈(-2,0)時(shí);當(dāng)x∈(0,1)時(shí);當(dāng)x∈(1,t)時(shí),判斷f′(x)的符號(hào)即可得出其單調(diào)性.②設(shè)h(t)=n-m,利用導(dǎo)數(shù)研究其單調(diào)性、極值即可;
(II)利用導(dǎo)數(shù)(通過多次求導(dǎo))研究其單調(diào)性即可.
解答:解:(I)f′(x)=(2x-3)e
x+(x
2-3x+3)e
x=x(x-1)e
x.
①當(dāng)t>1時(shí),
當(dāng)x∈(-2,0)時(shí),f′(x)>0,函數(shù)f(x)單調(diào)遞增;
當(dāng)x∈(0,1)時(shí),f′(x)<0,函數(shù)f(x)單調(diào)遞減;
當(dāng)x∈(1,t)時(shí),f′(x)>0,f(x)單調(diào)遞增.
綜上可知:當(dāng)x∈(-2,0),(1,t)時(shí),函數(shù)f(x)單調(diào)遞增;當(dāng)x∈(0,1)時(shí),函數(shù)f(x)單調(diào)遞減.
②設(shè)h(t)=n-m=(t
2-3t+3)e
t-13e
-2,h′(t)=t(t-1)e
t(t>2),列表如下:
由表格可知h(t)的極小值為h(1)=e-
=
>0,而h(-2)>0,
∴當(dāng)t>-2時(shí),h(t)>h(-2),即n>m.
(II)g(x)=(x
2-3x+3)e
x+(x-2)e
x=(x-1)
2e
x,
問題轉(zhuǎn)化為:判定方程(x-1)
2e
x=x當(dāng)x>1時(shí),根的個(gè)數(shù).
設(shè)u(x)=(x-1)
2e
x-x(x>1),則u′(x)=(x
2-1)e
x-1,
設(shè)v(x)=(x
2-1)e
x-1(x>1),則v′(x)=(x
2+2x-1)e
x,
當(dāng)x>1時(shí),v′(x)>0,v(x)在(1,+∞)上單調(diào)遞增,而v(1)=-1<0,v(2)=3e
2-1>0,
因此在(1,2)上存在唯一x
,使得v(x
)=0,即存在唯一x
∈(1,2)使得u′(x
)=0,
列表如下:
可知:u(x)
min=u(x
)<u(1)=-1<0,由u(2)=e
2-2>0,y=u(x)的圖象如圖所示,因此y=u(x)在(1,+∞)只有一個(gè)零點(diǎn),即g(x)=x(x>1)只有一個(gè)零點(diǎn).
點(diǎn)評(píng):熟練掌握利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性、極值是解題的關(guān)鍵.