一艘輪船在航行中的燃料費(fèi)和它的速度的立方成正比,已知在速度為每小時(shí)10公里時(shí)的燃料費(fèi)是每小時(shí)6元,而其他與速度無(wú)關(guān)的費(fèi)用是每小時(shí)96元,問(wèn)此輪船以何種速度航行時(shí),能使行駛每公里的費(fèi)用總和最。
【答案】分析:根據(jù)題意建立相應(yīng)的函數(shù)模型是解決本題的關(guān)鍵.建立起函數(shù)的模型之后,根據(jù)函數(shù)的類型選擇合適的方法求解相應(yīng)的最值問(wèn)題,充分發(fā)揮導(dǎo)數(shù)的工具作用.
解答:解:設(shè)船速度為x(x>0)時(shí),燃料費(fèi)用為Q元,則Q=kx3,
由6=k×103可得,∴,
∴總費(fèi)用,
,令y′=0得x=20,
當(dāng)x∈(0,20)時(shí),y′<0,此時(shí)函數(shù)單調(diào)遞減,
當(dāng)x∈(20,+∞)時(shí),y′>0,此時(shí)函數(shù)單調(diào)遞增,
∴當(dāng)x=20時(shí),y取得最小值,
答:此輪船以20公里/小時(shí)的速度使行駛每公里的費(fèi)用總和最。
點(diǎn)評(píng):本題考查函數(shù)模型的應(yīng)用,考查建立函數(shù)模型解決實(shí)際問(wèn)題的思想和方法.建立起函數(shù)模型之后選擇導(dǎo)數(shù)作為工具求解該最值問(wèn)題,體現(xiàn)了轉(zhuǎn)化與化歸的思想.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

一艘輪船在航行中的燃料費(fèi)和它的速度的立方成正比,已知在速度為每小時(shí)10公里時(shí)的燃料費(fèi)是每小時(shí)6元,而其他與速度無(wú)關(guān)的費(fèi)用是每小時(shí)96元,問(wèn)此輪船以何種速度航行時(shí),能使行駛每公里的費(fèi)用總和最小?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

一艘輪船在航行中的燃料費(fèi)和它的速度的立方成正比,已知在速度為每小時(shí)10公里時(shí)的燃料費(fèi)是每小時(shí)6元,而其他與速度無(wú)關(guān)的費(fèi)用是每小時(shí)96元,問(wèn)此輪船以何種速度航行時(shí),能使行駛每公里的費(fèi)用總和最。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年高三一輪精品復(fù)習(xí)單元測(cè)試(12)數(shù)學(xué)試卷解析版 題型:解答題

(本小題滿分10分)一艘輪船在航行中的燃料費(fèi)和它的速度的立方成正比,已知在速度為每小時(shí)10公里時(shí)的燃料費(fèi)是每小時(shí)6元,而其他與速度無(wú)關(guān)的費(fèi)用是每小時(shí)96元,問(wèn)此輪船以何種速度航行時(shí),能使行駛每公里的費(fèi)用總和最。

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

一艘輪船在航行中的燃料費(fèi)和它的速度的立方成正比,已知在速度為每小時(shí)10千米時(shí)燃料費(fèi)是每小時(shí)6元,而其他與速度無(wú)關(guān)的費(fèi)用是每小時(shí)96元,問(wèn)此輪船以何種速度航行時(shí)能使行駛每千米的費(fèi)用總和最小??

      

查看答案和解析>>

同步練習(xí)冊(cè)答案