11.已知函數(shù)f(x)滿足f(x)=-f(2-x),x∈R,且在[1,+∞)上遞增,若g(x)=f(1+x),且2g(log2a)-3g(1)≤g(log${\;}_{\frac{1}{2}}$a),則實數(shù)a的范圍為(  )
A.(0,2]B.(0,$\frac{1}{2}$]C.[$\frac{1}{2}$,2]D.[2,+∞)

分析 先判斷函數(shù)f(x)的奇偶性,再判斷g(x)的奇偶性和單調(diào)區(qū)間,化簡不等式解得即可.

解答 解:∵函數(shù)f(x)對?x∈R滿足f(x)=-f(2-x),
∴f(x)的圖象關(guān)于點(1,0)對稱,
∵g(x)=f(1+x),f(x)在[1,+∞)上遞增
∴g(x)也為奇函數(shù),并且在(0,+∞)是增函數(shù),
∵g($lo{g}_{\frac{1}{2}}a$)=g(-log2a),2g(log2a)-3g(1)≤g(log${\;}_{\frac{1}{2}}$a),
∴3g(log2a)≤3g(1),
即log2a≤1,
解得:0<a≤2.
故選:A.

點評 本題考查了函數(shù)的奇偶性和單調(diào)性的綜合應(yīng)用,注意自變量的取值范圍,考查了學(xué)生的轉(zhuǎn)化能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.在△ABC中,若a=1,∠A=$\frac{π}{4}$,則$\frac{{\sqrt{2}b}}{sinC+cosC}$=$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)經(jīng)過點(1,$\frac{3}{2}$),離心率e=$\frac{1}{2}$.
(Ⅰ)求橢圓C的方程,
(Ⅱ)設(shè)動直線l:y=kx+m與橢圓C相切,切點為T,且直線l與直線x=4相交于點S.試問:在坐標(biāo)平面內(nèi)是否存在一定點,使得以ST為直徑的圓恒過該定點?若存在,求出該點的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知函數(shù)f(x)=$\left\{\begin{array}{l}{-\frac{3x+2}{x+1},x∈(-1,0]}\\{x,x∈(0,1]}\end{array}\right.$且g(x)=mx+m,若方程g(x)=f(x)在(-1,1]內(nèi)有且僅有兩個不同的根,則實數(shù)m的取值范圍是( 。
A.(-$\frac{11}{4}$,-2]∪(0,$\frac{1}{2}$]B.(-$\frac{9}{4}$,-2]∪(0,$\frac{1}{2}$]C.(-$\frac{11}{4}$,-2]∪(0,$\frac{2}{3}$]D.(-$\frac{9}{4}$,-2]∪(0,$\frac{2}{3}$]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.把函數(shù)f(x)=cos(2x+φ)的圖象上所有的點向左平移$\frac{π}{6}$個單位長度后得到y(tǒng)=g(x)的圖象,若y=g(x)的一個對稱中心是($\frac{π}{6}$,0),則φ的一個可能取值是( 。
A.$\frac{π}{3}$B.$\frac{7π}{12}$C.$\frac{5π}{6}$D.$\frac{2π}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.設(shè)變量x,y滿足不等式$\left\{\begin{array}{l}{x+y≥3}\\{x-y≥-1}\\{2x-y≤3}\end{array}\right.$,則x2+y2的最小值是( 。
A.$\frac{3\sqrt{2}}{2}$B.$\frac{9}{2}$C.$\sqrt{5}$D.2$\sqrt{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知橢圓C1:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的離心率為$\frac{{\sqrt{2}}}{2}$,并且直線y=x+b是拋物線C2:y2=4x的一條切線.
(Ⅰ)求橢圓C1的方程.
(Ⅱ)設(shè)點A,B分別是橢圓C1的左右頂點,F(xiàn)是橢圓C1的左焦點.若過點P(-2,0)的直線與橢圓C1相交于不同兩點M,N.
①求證:∠AFM=∠BFN;②求△MFN面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.在等腰梯形ABCD中,AB∥DC,AB=2,BC=1,∠ABC=60°.動點E和F分別在線段BC和DC上,且$\overrightarrow{BE}=λ\overrightarrow{BC},\overrightarrow{DF}=\frac{1}{9λ}\overrightarrow{DC}$.
(1)當(dāng)λ=$\frac{1}{2}$,求|$\overrightarrow{AE}$|;
(2)求$\overrightarrow{AE}•\overrightarrow{AF}$的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.下面四個推理中,屬于演繹推理的是( 。
A.觀察下列各式:$\frac{3}{5}$<$\frac{3+1}{5+1}$,$\frac{3}{5}$<$\frac{3+2}{5+2}$,$\frac{3}{5}$<$\frac{3+3}{5+3}$,…,則$\frac{3}{5}$<$\frac{3+m}{5+m}$(m為正整數(shù))
B.觀察(x2)′=2x,(x4)′=4x3,(cosx)′=-sinx,可得偶函數(shù)的導(dǎo)函數(shù)為奇函數(shù)
C.在平面上,若兩個正三角形的邊長比為1:2,則它們的面積比為1:4,類似的,在空間中,若兩個正四面體的棱長比為1:2,則它們的體積比為1:8
D.所有平行四邊形對角線互相平分,矩形是平行四邊形,所以矩形的對角線互相平分

查看答案和解析>>

同步練習(xí)冊答案