(12分)如圖所示,在直四棱柱中,, ,點是棱上一點.

(Ⅰ)求證:;

(Ⅱ)求證:;

(Ⅲ)試確定點的位置,使得平面平面.

 

【答案】

(Ⅰ)證明:由直四棱柱,得,

所以是平行四邊形,所以     ………………………(3分)

,,所以    ………(4分)

(Ⅱ)證明:因為, 所以 ………(6分)

又因為,且,所以…(7分)

,所以.…………(8分)

(Ⅲ)當點為棱的中點時,平面平面.………(9分)

取DC的中點N,,連結(jié),連結(jié).因為N是DC中點,BD=BC,所以;

又因為DC是面ABCD與面的交線,而面ABCD⊥面,所以……………(11分)

又可證得,的中點,所以BM∥ON且BM=ON,即BMON是平行四邊形,所以BN∥OM,所以O(shè)M平面,所以平面平面………………(12分)

【解析】略         

 

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

19、如圖所示,在直四棱柱ABCD-A1B1C1D1中,DB=BC,DB⊥AC,點M是棱BB1上一點.
(1)求證:B1D1∥面A1BD;
(2)求證:MD⊥AC;
(3)試確定點M的位置,使得平面DMC1⊥平面CC1D1D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

18、如圖所示,在直四棱柱ABCD-A1B1C1D1中,DB⊥AC,點M是棱BB1上一點.
(1)求證:B1D1∥面A1BD;
(2)求證:MD⊥AC.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

16、如圖所示,在直四棱柱M中,DB=BC,MN,點EN是棱MN上一點.
(1)求證B1D1∥面A1BD;
(2)求證:MD⊥AC;
(3)試確定點M的位置,使得平面DMC1⊥平面CC1D1D.

查看答案和解析>>

科目:高中數(shù)學 來源:同步題 題型:解答題

如圖所示,在直四棱柱ABCD-A1B1C1D1中,DB=BC,DB⊥AC,點M是棱BB1上一點.
(1)求證:B1D1∥面A1BD;
(2)求證:MD⊥AC;
(3)試確定點M的位置,使得平面DMC1⊥平面CC1D1D。

查看答案和解析>>

科目:高中數(shù)學 來源:2011年高三數(shù)學第一輪復習鞏固與練習:空間中的垂直關(guān)系(解析版) 題型:解答題

如圖所示,在直四棱柱ABCD-A1B1C1D1中,DB=BC,DB⊥AC,點M是棱BB1上一點.
(1)求證:B1D1∥面A1BD;
(2)求證:MD⊥AC;
(3)試確定點M的位置,使得平面DMC1⊥平面CC1D1D.

查看答案和解析>>

同步練習冊答案