【題目】某市在創(chuàng)建全國旅游城市的活動中,對一塊以O為圓心,R(R為常數(shù),單位:米)為半徑的半圓形荒地進行治理改造,其中弓形BCD區(qū)域(陰影部分)種植草坪,△OBD區(qū)域用于兒童樂園出租,其余區(qū)域用于種植觀賞植物.已知種植草坪和觀賞植物的成本分別是每平方米5元和55元,兒童樂園出租的利潤是每平方米95元.
(1)設∠BOD=θ(單位:弧度),用θ表示弓形BCD的面積S弓=f(θ).
(2)如果該市規(guī)劃辦邀請你規(guī)劃這塊土地,如何設計∠BOD的大小才能使總利潤最大?并求出最大值.
【答案】(1)S弓=f(θ)= R2(θ-sin θ),θ∈(0,π).(2)見解析
【解析】
(1)由S弓=S扇﹣S△,利用扇形及三角形面積公式即得;
(2)由題意列出函數(shù)關系式,利用導數(shù)判斷函數(shù)單調(diào)性求得最大值即可.
解: (1)S扇=R2θ,S△OBD=R2sinθ,
S弓=f(θ)=R2(θ﹣sinθ),θ∈(0,π)
(2)設總利潤為y元,兒童樂園利潤為y1元,種植草坪成本為y2元,種植觀賞植物成本為y3元;
則y1=R2sinθ95,y2=R2(θ﹣sinθ)5,y3=R2(π﹣θ)55,
∴y=y1﹣y2﹣y3=R2(100sinθ+50θ﹣55π),
設g(θ)=100sinθ+50θ﹣55π,θ∈(0,π).
∴g′(θ)=100cosθ+50
∴g′(θ)>0,cosθ>﹣,g(θ)在θ∈(0,)上為增函數(shù);
g′(θ)<0,cosθ<﹣,g(θ)在θ∈(,π)上為減函數(shù);
當θ=時,g(θ)取到最大值,此時總利潤最大,
此時總利潤最大:y=R2(100sinθ+50θ﹣55π)=R2(50﹣π).
答:所以當園林公司把扇形的圓心角設計成時,總利潤取最大值R2(50﹣π)
科目:高中數(shù)學 來源: 題型:
【題目】下表提供了某廠節(jié)能降耗技術改造后生產(chǎn)甲產(chǎn)品過程中記錄的產(chǎn)量(噸)與相應的生產(chǎn)能耗(噸)標準煤的幾組對照數(shù)據(jù):
3 | 4 | 5 | 6 | |
2.5 | 3 | 4 | 4.5 |
(1)請根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出關于的線性回歸方程;
(2)已知該廠技術改造前100噸甲產(chǎn)品能耗為90噸標準煤,試根據(jù)(1)求出的線性回歸方程,預測生產(chǎn)100噸甲產(chǎn)品的生產(chǎn)能耗比技術改造前降低多少噸標準煤?
(參考:)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】給出下列四個命題:
①函數(shù)y= 為奇函數(shù);
②y=2 的值域是(1,+∞)
③函數(shù)y= 在定義域內(nèi)是減函數(shù);
④若函數(shù)f(2x)的定義域為[1,2],則函數(shù)y=f( )定義域為[4,8]
其中正確命題的序號是 . (填上所有正確命題的序號)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,正三棱柱ABCA1B1C1的所有棱長都為2,D為CC1的中點.
(1)求證:AB1⊥平面A1BD;
(2)求二面角AA1DB的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=Asin(ωx+)(A>0,ω>0,||< ),其導函數(shù)f'(x)的部分圖象如圖所示,則函數(shù)f(x)的解析式為( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】對于數(shù)列{an}、{bn},Sn為數(shù)列{an}的前n項和,且Sn+1﹣(n+1)=Sn+an+n,a1=b1=1,bn+1=3bn+2,n∈N* .
(1)求數(shù)列{an}、{bn}的通項公式;
(2)令cn= ,求數(shù)列{cn}的前n項和Tn .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】對于函數(shù)f(x),若存在常數(shù)a≠0,使得x取定義域內(nèi)的每一個值,都有f(x)=﹣f(2a﹣x),則稱f(x)為“準奇函數(shù)”.給定下列函數(shù):①f(x)= ,②f(x)=(x+1)2;③f(x)=x3;④f(x)=sin(x+1),其中的“準奇函數(shù)”是(寫出所有“準奇函數(shù)”的序號)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com