π
4
<α<
4
,0<β<
π
4
且sin(α+
π
4
)=
3
5
,cos(
π
4
+β)=
5
13
,求sin(α+β)的值.
考點(diǎn):兩角和與差的正弦函數(shù)
專題:三角函數(shù)的圖像與性質(zhì)
分析:首先,根據(jù)sin(α+
π
4
)=
3
5
,cos(
π
4
+β)=
5
13
,求解cos(α+
π
4
),sin(
π
4
+β),然后,結(jié)合誘導(dǎo)公式進(jìn)行求值.
解答: 解:∵
π
4
<α<
4
,
π
2
<α+
π
4
<π

cos(α+
π
4
)=-
1-sin2(α+
π
4
)
=-
4
5
,
又∵0<β<
π
4

π
4
<β+
π
4
π
2
,
sin(β+
π
4
)=
1-cos2(α+
π
4
)
=
12
13
,
又∵-sin(α+β)=cos(α+β+
π
2
)=cos[(α+
π
4
)+(β+
π
4
)]

=cos(α+
π
4
)cos(β+
π
4
)-sin(α+
π
4
)sin(β+
π
4
)

=(-
4
5
5
13
-
12
13
×
3
5
=-
56
65

∴sin(α+β)=
56
65
點(diǎn)評(píng):本題重點(diǎn)考查了三角函數(shù)的求值、三角恒等變換公式等知識(shí),屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)a>b>0,a+b=1且x=(
1
a
b,y=log (
1
a
+
1
b
)
a,z=log
1
b
a,則x,y,z的大小關(guān)系是( 。
A、y<x<z
B、z<y<x
C、y<z<x
D、x<y<z

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
.
2cos(x-
π
2
)
sin2x
2cos(x+
π
6
)
.
,(x∈R)
(1)求f(x)的最小正周期及判斷函數(shù)f(x)的奇偶性;
(2)在△ABC中,f(A)=0,|
AC
|=m,m∈[2,4].若對(duì)任意實(shí)數(shù)t恒有|
AB
-t
AC
|≥|
BC
|,求△ABC面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖在四棱錐P一ABCD中,底面ABCD為直角梯形,AD∥BC,∠BAD=90°,BC=2AD,AC與BD交于點(diǎn)O,點(diǎn)M,N分別在線PC、AB上,
CM
MP
=
BN
NA
=2.
(Ⅰ)求證:平面MNO∥平面PAD;
(Ⅱ)若平面PA⊥平面ABCD,∠PDA=60°,且PD=DC=BC=2,求幾何體M-ABC的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)M?N*,正項(xiàng)數(shù)列{an}的前項(xiàng)積為Tn,且?k∈M,當(dāng)n>k時(shí),
Tn+kTn-k
=TnTk都成立.
(1)若M={1},a1=
3
,a2=3
3
,求數(shù)列{an}的前n項(xiàng)和;
(2)若M={3,4},a1=
2
,求數(shù)列{an}的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某校從參加某次知識(shí)競(jìng)賽的同學(xué)中,選取60名同學(xué)將其成績(jī)(百分制,均為整數(shù))分成[40,50),[50,60),[60,70),[70,80),[80,90),[90,100]六組后,得到部分頻率分布直方圖(如圖),觀察圖形中的信息,回答下列問題.
(Ⅰ)求分?jǐn)?shù)在[70,80)內(nèi)的頻率,并補(bǔ)全這個(gè)頻率分布直方圖;
(Ⅱ)從頻率分布直方圖中,估計(jì)本次考試成績(jī)的中位數(shù);
(Ⅲ)若從第1組和第6組兩組學(xué)生中,隨機(jī)抽取2人,求所抽取2人成績(jī)之差的絕對(duì)值大于10的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}是公差大于0的等差數(shù)列,且a1=2,a3=a22-10.
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)若數(shù)列{bn}是以函數(shù)f(x)=4sin2πx的最小正周期為首項(xiàng),以f(
1
3
)為公比的等比數(shù)列,求數(shù)列{an-bn}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=2cosxcos(
π
6
-x)-
3
sin2x+sinxcosx.
(1)求f(x)的最小正周期和單調(diào)增區(qū)間;
(2)設(shè)x∈[-
π
3
π
2
],求f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

圓(x+1)2+(y-1)2=8關(guān)于原點(diǎn)對(duì)稱的圓的方程是
 

查看答案和解析>>

同步練習(xí)冊(cè)答案