18.已知命題p:不等式ax2+ax+1>0的解集為全體實(shí)數(shù),則實(shí)數(shù)a∈(0,4);命題q:“x2-3x>0”是“x>4”的必要不充分條件,則下列命題正確的是(  )
A.p∧qB.p∧(?q)C.(?p)∧qD.(?p)∧(?q)

分析 命題p:a=0時,不等式ax2+ax+1>0化為1>0,滿足條件.a(chǎn)≠0時,不等式ax2+ax+1>0的解集為全體實(shí)數(shù),可得$\left\{\begin{array}{l}{a>0}\\{△={a}^{2}-4a<0}\end{array}\right.$,解得a范圍,進(jìn)而判斷出結(jié)論.定義命題q:由x2-3x>0解得x>3或x<0,即可判斷出關(guān)系.

解答 解:命題p:a=0時,不等式ax2+ax+1>0化為1>0,滿足條件.
a≠0時,不等式ax2+ax+1>0的解集為全體實(shí)數(shù),
∴$\left\{\begin{array}{l}{a>0}\\{△={a}^{2}-4a<0}\end{array}\right.$,解得0<a<4.
則實(shí)數(shù)a∈[0,4),因此是假命題.
命題q:由x2-3x>0解得x>3或x<0.∴“x2-3x>0”是“x>4”的必要不充分條件,是真命題.
由以上可得:(¬p)∧q是真命題.
故選:C.

點(diǎn)評 本題考查了函數(shù)的單調(diào)性、不等式的解法、簡易邏輯的判定方法,考查了推理能力與計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.傾斜角為45o的直線l經(jīng)過y2=4x的焦點(diǎn)F,且與拋物線相交于A、B兩點(diǎn),則線段|AB|=8.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.在平面直角坐標(biāo)系xOy中,曲線C1的參數(shù)方程為$\left\{\begin{array}{l}{x=acosφ}\\{y=bsinφ}\end{array}\right.$(a>b>0,φ為參數(shù)),在以O(shè)為極點(diǎn),x軸的正半軸為極軸的極坐標(biāo)系中,曲線C2是圓心在極軸上,且經(jīng)過極點(diǎn)的圓,已知曲線C1上的點(diǎn)M(1,$\frac{\sqrt{3}}{2}$)對應(yīng)的參數(shù)φ=$\frac{π}{3}$,射線θ=$\frac{π}{3}$與曲線C2交于點(diǎn)D(1,$\frac{π}{3}$).
(1)求曲線C1的普通方程和曲線C2的直角坐標(biāo)方程;
(2)若點(diǎn)A,B的極坐標(biāo)分別為(ρ1,θ),(ρ2,θ+$\frac{π}{2}$),且兩點(diǎn)均在曲線C1上,求$\frac{1}{{ρ}_{1}^{2}}$+$\frac{1}{{ρ}_{2}^{2}}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.若復(fù)數(shù)z=cos$\frac{π}{12}$+isin$\frac{π}{12}$(i是虛數(shù)單位),復(fù)數(shù)z2的實(shí)部虛部分別為a,b,則下列結(jié)論正確的是( 。
A.ab<0B.a2+b2≠1C.$\frac{a}=\sqrt{3}$D.$\frac{a}=\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.如圖,已知平面α∩平面β=l,α⊥β,A,B是直線l上的兩點(diǎn),C,D是平面β內(nèi)的兩點(diǎn),且DA⊥l,CB⊥l,DA=4,AB=6,CB=8,P是平面α內(nèi)的一動點(diǎn),使得直線CP,DP與平面α所成角相等,則三角形PAB面積的最大值為12.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知i為虛數(shù)單位,$\overline{z}$是z的共軛復(fù)數(shù),若($\overline{z}$+i)(1-i)=1+3i,則|z|=( 。
A.2B.$\sqrt{2}$C.1D.$\frac{{\sqrt{2}}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.設(shè)實(shí)數(shù)x,y滿足$\left\{{\begin{array}{l}{x+y-4≤0}\\{x-y≥0}\\{y≥-1}\end{array}}\right.$,則z=2x+y的最大值與最小值的和為( 。
A.4B.5C.6D.7

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知全集U=R,A={x|x>3},B={x|≥-1},則(∁UA)∩B=(  )
A.[-1,3]B.[-1,3)C.[-1,+∞)D.(3,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知平面向量$\overrightarrow a$與$\overrightarrow b$的夾角為$\frac{π}{3}$,且|$\overrightarrow a$+2$\overrightarrow b}$|=2$\sqrt{3}$,|${\overrightarrow b}$|=1,則|$\overrightarrow a}$|=( 。
A.1B.$\sqrt{3}$C.2D.3

查看答案和解析>>

同步練習(xí)冊答案