已知數(shù)列{an}中,a1=2,an+1=an+2n(n∈N*),則a100的值是( 。
A、9900B、9902
C、9904D、11000
考點(diǎn):數(shù)列遞推式
專題:等差數(shù)列與等比數(shù)列
分析:由an+1=an+2n,可得an+1-an=2n,利用“累加求和”、等差數(shù)列的前n項(xiàng)和公式即可得出.
解答: 解:∵a1=2,an+1=an+2n,
∴an+1-an=2n,
∴an=(an-an-1)+(an-1-an-2)+…+(a2-a1)+a1
=2(n-1)+2(n-2)+…+2×1+2
=
n(n-1)
2
+2
=n2-n+2.
∴a100=1002-100+2=9902.
故選:B.
點(diǎn)評(píng):本題考查了“累加求和”、等差數(shù)列的前n項(xiàng)和公式,考查了推理能力與計(jì)算能力,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

找規(guī)律:
1
2   3   4
5   6   7   8   9
10  11  12  13  14   15   16

2015出現(xiàn)在第
 
行.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(tan10°-
3
)•
sin80°
cos40°
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)y=cos2x+cosx的最小值是( 。
A、-1
B、-
1
4
C、0
D、
3
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=|
x
-ax-b|,a,b∈R.
(1)當(dāng)a=0,b=1時(shí),寫(xiě)出函數(shù)f(x)的單調(diào)區(qū)間;
(2)當(dāng)a=
1
2
時(shí),記函數(shù)f(x)在區(qū)間[0,4]上的最大值為g(b),當(dāng)b變化時(shí),求g(b)的最小值;
(3)若對(duì)任意實(shí)數(shù)a,b,總存在實(shí)數(shù)x0∈[0,4]使得不等式f(x0)≥m成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若點(diǎn)P在三個(gè)頂點(diǎn)坐標(biāo)分別為C(0,0)、A(0,2
3
)、B(2,0)的△ABC內(nèi)運(yùn)動(dòng),則動(dòng)點(diǎn)P到頂點(diǎn)A的距離|PA|<2
3
的概率為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

有10本不同的數(shù)學(xué)書(shū),9本不同的語(yǔ)文書(shū),8本不同的英語(yǔ)書(shū),從中任取兩本不同類的書(shū),共有不同的取法
 
種.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,A=30°,AB=2,BC=1,則AC=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

3個(gè)不同的球放入5個(gè)不同和盒子,每個(gè)盒子放球數(shù)量不限,共有多少種放法?

查看答案和解析>>

同步練習(xí)冊(cè)答案