【題目】已知數(shù)列滿足,若為單調(diào)遞增的等差數(shù)列,其前項(xiàng)和為,則__________;若為單調(diào)遞減的等比數(shù)列,其前項(xiàng)和為,則__________.

【答案】370 6

【解析】

1為單調(diào)遞增的等差數(shù)列,則公差.由數(shù)列滿足,,可得,,可得,為一元二次方程的兩個(gè)實(shí)數(shù)根,且,解得再利用通項(xiàng)公式與求和公式即可得出.設(shè)等比數(shù)列的公比為,根據(jù)已知可得,是一元二次方的兩個(gè)實(shí)數(shù)根,又為單調(diào)遞減的等比數(shù)列,可得,.再利用通項(xiàng)公式與求和公式即可得出.

為單調(diào)遞增的等差數(shù)列,則公差

數(shù)列滿足,,

,,

為一元二次方程的兩個(gè)實(shí)數(shù)根,且,

解得,,

可得,,解得

設(shè)等比數(shù)列的公比為,數(shù)列滿足,,

,是一元二次方程的兩個(gè)實(shí)數(shù)根,

為單調(diào)遞減的等比數(shù)列,,

,解得

,解得

,解得

故答案為:(1). 370 (2). 6

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,有一個(gè)水平放置的透明無蓋的正方體容器,容器高8cm,將一個(gè)球放在容器口,再向容器注水,當(dāng)球面恰好接觸水面時(shí)測得水深為6cm,如不計(jì)容器的厚度,則球的體積為( )

A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了檢驗(yàn)設(shè)備M與設(shè)備N的生產(chǎn)效率,研究人員作出統(tǒng)計(jì),得到如下表所示的結(jié)果,則

設(shè)備M

設(shè)備N

生產(chǎn)出的合格產(chǎn)品

48

43

生產(chǎn)出的不合格產(chǎn)品

2

7

附:

P(K2k0)

0.15

0.10

0.050

0.025

0.010

k0

2.072

2.706

3.841

5.024

6.635

參考公式:,其中.

A. 有90%的把握認(rèn)為生產(chǎn)的產(chǎn)品質(zhì)量與設(shè)備的選擇有關(guān)

B. 沒有90%的把握認(rèn)為生產(chǎn)的產(chǎn)品質(zhì)量與設(shè)備的選擇有關(guān)

C. 可以在犯錯(cuò)誤的概率不超過0.01的前提下認(rèn)為生產(chǎn)的產(chǎn)品質(zhì)量與設(shè)備的選擇有關(guān)

D. 不能在犯錯(cuò)誤的概率不超過0.1的前提下認(rèn)為生產(chǎn)的產(chǎn)品質(zhì)量與設(shè)備的選擇有關(guān)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】現(xiàn)要完成下列3項(xiàng)抽樣調(diào)查:

①從15種疫苗中抽取5種檢測是否合格.

②渦陽縣某中學(xué)共有480名教職工,其中一線教師360名,行政人員48名,后勤人員72名.為了解教職工對學(xué)校校務(wù)公開方面的意見,擬抽取一個(gè)容量為20的樣本.

③渦陽縣某中學(xué)報(bào)告廳有28排,每排有35個(gè)座位,一次報(bào)告會恰好坐滿了聽眾,報(bào)告會結(jié)束后,為了聽取意見,需要請28名聽眾進(jìn)行座談.

較為合理的抽樣方法是( )

A. ①簡單隨機(jī)抽樣, ②系統(tǒng)抽樣, ③分層抽樣

B. ①簡單隨機(jī)抽樣, ②分層抽樣, ③系統(tǒng)抽樣

C. ①系統(tǒng)抽樣, ②簡單隨機(jī)抽樣, ③分層抽樣

D. ①分層抽樣, ②系統(tǒng)抽樣, ③簡單隨機(jī)抽樣

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知一家公司生產(chǎn)某種品牌服裝的年固定成本為10萬元,每生產(chǎn)1千件需另投入2.7萬元.設(shè)該公司一年內(nèi)共生產(chǎn)該品牌服裝x千件并全部銷售完,每千件的銷售收入為萬元,且.

1)寫出年利潤W(萬元)關(guān)于年產(chǎn)量x(千件)的函數(shù)解析式;

2)年產(chǎn)量為多少千件時(shí),該公司在這一品牌服裝的生產(chǎn)中所獲得利潤最大?(注:年利潤=年銷售收入年總成本)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列{an}的前n項(xiàng)和為Sn , 數(shù)列{bn},{cn}滿足 (n+1)bn=an+1 ,(n+2)cn= ,其中n∈N*.
(1)若數(shù)列{an}是公差為2的等差數(shù)列,求數(shù)列{cn}的通項(xiàng)公式;
(2)若存在實(shí)數(shù)λ,使得對一切n∈N*,有bn≤λ≤cn , 求證:數(shù)列{an}是等差數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在斜三棱柱ABCA1B1C1中,側(cè)面AA1C1C是菱形,AC1A1C交于點(diǎn)O,點(diǎn)EAB的中點(diǎn).

(1)求證:OE∥平面BCC1B1.

(2)AC1A1B,求證:AC1BC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】現(xiàn)有 (n≥2,n∈N*)個(gè)給定的不同的數(shù)隨機(jī)排成一個(gè)下圖所示的三角形數(shù)陣:
設(shè)Mk是第k行中的最大數(shù),其中1≤k≤n,k∈N*.記M1<M2<…<Mn的概率為pn
(1)求p2的值;
(2)證明:pn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】把圓分成個(gè)扇形,設(shè)用4種顏色給這些扇形染色,每個(gè)扇形恰染一種顏色,并且要求相鄰扇形的顏色互不相同,設(shè)共有種方法.

(1)寫出,的值

(2)猜想 ,并用數(shù)學(xué)歸納法證明。

查看答案和解析>>

同步練習(xí)冊答案