【題目】定義為n個(gè)正數(shù)的“均倒數(shù)”.已知正項(xiàng)數(shù)列{an}的前n項(xiàng)的“均倒數(shù)”為.
(1)求數(shù)列{an}的通項(xiàng)公式.
(2)設(shè)數(shù)列的前n項(xiàng)和為,若4<對(duì)一切恒成立試求實(shí)數(shù)m的取值范圍.
(3)令,問(wèn):是否存在正整數(shù)k使得對(duì)一切恒成立,如存在求出k值,否則說(shuō)明理由.
【答案】(1);(2);(3)存在正整數(shù)k=10使得對(duì)一切恒成立.
【解析】
(1)由題意首先確定數(shù)列的前n項(xiàng)和,然后利用前n項(xiàng)和與通項(xiàng)公式的關(guān)系求解數(shù)列的通項(xiàng)公式即可;
(2)首先裂項(xiàng)求和求得,然后結(jié)合前n項(xiàng)和的范圍得到關(guān)于m的不等式,求解不等式即可確定實(shí)數(shù)m的取值范圍;
(3)解法一:計(jì)算的值,確定取得最大值時(shí)的n的取值即可求得實(shí)數(shù)k的值;
解法二:由題意可知,滿足題意時(shí)有,據(jù)此求解實(shí)數(shù)k的范圍,結(jié)合k為正整數(shù)即可求得實(shí)數(shù)k的值.
(1)設(shè)數(shù)列的前n項(xiàng)和為,
由于數(shù)列{an}的前n項(xiàng)的“均倒數(shù)”為,
所以,
=,
當(dāng),
當(dāng),
(對(duì)當(dāng)成立),
.
(2)==,
==,
<對(duì)一切恒成立,
,
解之得,
即m的取值范圍是.
(3)解法一:=,
由于=,
時(shí),時(shí),
時(shí)取得最大值,
即存在正整數(shù)k=10使得對(duì)一切恒成立.
解法二:=,
假設(shè)存在正整數(shù)k使得則為數(shù)列中的最大項(xiàng),
由得,
,
又,
k=10,
即存在正整數(shù)k=10使得對(duì)一切恒成立.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某市對(duì)所有高校學(xué)生進(jìn)行普通話水平測(cè)試,發(fā)現(xiàn)成績(jī)服從正態(tài)分布N(μ,σ2),下表用莖葉圖列舉出來(lái)抽樣出的10名學(xué)生的成績(jī).
(1)計(jì)算這10名學(xué)生的成績(jī)的均值和方差;
(2)給出正態(tài)分布的數(shù)據(jù):P(μ﹣σ<X<μ+σ)=0.6826,P(μ﹣2σ<X<μ+2σ)=0.9544.
由(1)估計(jì)從全市隨機(jī)抽取一名學(xué)生的成績(jī)?cè)冢?/span>76,97)的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知等差數(shù)列中, , .
(1)求的通項(xiàng)公式;
(2)設(shè),求數(shù)列的前項(xiàng)和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】公元263年左右,我國(guó)數(shù)學(xué)家劉徽發(fā)現(xiàn)當(dāng)圓內(nèi)接正多邊形的邊數(shù)無(wú)限增加時(shí),多邊形的面積可無(wú)限接近圓的面積,并創(chuàng)立了“割圓術(shù)”,利用“割圓術(shù)”,劉徽得到了圓周率精確到小數(shù)點(diǎn)后兩位的近似值3.14,這就是著名的“徽率”,利用劉徽的“割圓術(shù)”思想設(shè)計(jì)的一個(gè)程序框圖,則輸出的值為( )
(參考數(shù)據(jù):)
A. 12 B. 24 C. 48 D. 96
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】建設(shè)生態(tài)文明,是關(guān)系人民福祉,關(guān)乎民族未來(lái)的長(zhǎng)遠(yuǎn)大計(jì).某市通宵營(yíng)業(yè)的大型商場(chǎng),為響應(yīng)節(jié)能減排的號(hào)召,在氣溫超過(guò)時(shí),才開放中央空調(diào)降溫,否則關(guān)閉中央空調(diào).如圖是該市夏季一天的氣溫(單位:)隨時(shí)間(,單位:小時(shí))的大致變化曲線,若該曲線近似的滿足函數(shù)關(guān)系.
(1)求函數(shù)的表達(dá)式;
(2)請(qǐng)根據(jù)(1)的結(jié)論,判斷該商場(chǎng)的中央空調(diào)應(yīng)在本天內(nèi)何時(shí)開啟?何時(shí)關(guān)閉?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某同學(xué)為研究函數(shù)的性質(zhì),構(gòu)造了如圖所示的兩個(gè)邊長(zhǎng)為1的正方形ABCD和BEFC,點(diǎn)P是邊BC上的一個(gè)動(dòng)點(diǎn),設(shè),則.請(qǐng)你參考這些信息,推知函數(shù)的圖象的對(duì)稱軸是______;函數(shù)的零點(diǎn)的個(gè)數(shù)是______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知橢圓,點(diǎn)B是其下頂點(diǎn),過(guò)點(diǎn)B的直線交橢圓C于另一點(diǎn)A(A點(diǎn)在軸下方),且線段AB的中點(diǎn)E在直線上.
(1)求直線AB的方程;
(2)若點(diǎn)P為橢圓C上異于A、B的動(dòng)點(diǎn),且直線AP,BP分別交直線于點(diǎn)M、N,證明:OM·ON為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】環(huán)保組織隨機(jī)抽檢市內(nèi)某河流2015年內(nèi)100天的水質(zhì),檢測(cè)單位體積河水中重金屬含量,并根據(jù)抽檢數(shù)據(jù)繪制了如下圖所示的頻率分布直方圖.
(Ⅰ)求圖中的值;
(Ⅱ)假設(shè)某企業(yè)每天由重金屬污染造成的經(jīng)濟(jì)損失(單位:元)與單位體積河水中重金屬含量
的關(guān)系式為,若將頻率視為概率,在本年內(nèi)隨機(jī)抽取一天,試估計(jì)這天經(jīng)濟(jì)損失不超過(guò)500元的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】隨著國(guó)家二孩政策的全面放開,為了調(diào)查一線城市和非一線城市的二孩生育意愿,某機(jī)構(gòu)用簡(jiǎn)單隨機(jī)抽樣方法從不同地區(qū)調(diào)查了位育齡婦女,結(jié)果如表.
非一線 | 一線 | 總計(jì) | |
愿生 | |||
不愿生 | |||
總計(jì) |
附表:
> | |||
由算得,參照附表,得到的正確結(jié)論是( )
A. 在犯錯(cuò)誤的概率不超過(guò)的前提下,認(rèn)為“生育意愿與城市級(jí)別有關(guān)”
B. 有以上的把握認(rèn)為“生育意愿與城市級(jí)別有關(guān)”
C. 在犯錯(cuò)誤的概率不超過(guò)的前提下,認(rèn)為“生育意愿與城市級(jí)別無(wú)關(guān)”
D. 有以上的把握認(rèn)為“生育意愿與城市級(jí)別無(wú)關(guān)”
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com