已知關于x的一元二次函數(shù)
(1)設集合P={1,2,3}和Q={-1,1,2,3,4},分別從集合P和Q中隨機取一個數(shù)作為和,
求函數(shù)在區(qū)間[上是增函數(shù)的概率;
(2)設點(,)是區(qū)域內(nèi)的隨機點,求函數(shù)上是增函數(shù)的概率.
(1);(2)
解析試題分析:(1)考查古典概型,滿足條件的是5個,總的基本事件個數(shù)是15個,求兩者的比即可;(2)考查幾何概型,求出滿足條件的區(qū)域面積比上總的區(qū)域面積即可.
試題解析:(1)∵函數(shù)的圖象的對稱軸為
要使在區(qū)間上為增函數(shù),當且僅當>0且,
若=1則=-1;若=2則=-1,1;若=3則=-1,1;
∴事件包含基本事件的個數(shù)是1+2+2=5,
∴所求事件的概率為. 6分
(2)由(1)知當且僅當且>0時,函數(shù)上為增函數(shù),
依條件可知試驗的全部結果所構成的區(qū)域為,構成所求事件的區(qū)域為三角形部分.
由
∴所求事件的概率為. 12分
考點:(1)古典概型;(2)幾何概型.
科目:高中數(shù)學 來源: 題型:解答題
已知當x=5時,二次函數(shù)f(x)=ax2+bx取得最小值,等差數(shù)列{an}的前n項和Sn=f(n),a2=-7.
(1)求數(shù)列{an}的通項公式;
(2)數(shù)列{bn}的前n項和為Tn,且bn=,求Tn.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
某家庭進行理財投資,根據(jù)長期收益率市場預測,投資債券等穩(wěn)健型產(chǎn)品的收益與投資額成正比,投資股票等風險型產(chǎn)品的收益與投資額的算術平方根成正比。已知投資1萬元時兩類產(chǎn)品的收益分別為0.125萬元和0.5萬元(如圖).
(1)分別寫出兩種產(chǎn)品的收益與投資的函數(shù)關系.
(2)該家庭現(xiàn)有20萬元資金,全部用于理財投資,問:怎么分配資金能使投資獲得最大收益,其最大收益是多少萬元?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
定義在[﹣1,1]上的奇函數(shù)f(x)滿足f(1)=2,且當a,b∈[﹣1,1],a+b≠0時,有.
(1)試問函數(shù)f(x)的圖象上是否存在兩個不同的點A,B,使直線AB恰好與y軸垂直,若存在,求出A,B兩點的坐標;若不存在,請說明理由并加以證明.
(2)若對所有x∈[﹣1,1],a∈[﹣1,1]恒成立,求實數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
某廠擬在2014年通過廣告促銷活動推銷產(chǎn)品.經(jīng)調(diào)查測算,產(chǎn)品的年銷售量(假定年產(chǎn)量=年銷售量)萬件與年廣告費用萬元滿足關系式:(為常數(shù)).若不做廣告,則產(chǎn)品的年銷售量恰好為1萬件.已知2014年生產(chǎn)該產(chǎn)品時,該廠需要先固定投入8萬元,并且預計生產(chǎn)每1萬件該產(chǎn)品時,需再投入4萬元,每件產(chǎn)品的銷售價格定為每件產(chǎn)品所需的年平均成本的1.5倍(每件產(chǎn)品的成本包括固定投入和生產(chǎn)再投入兩部分,不包括廣告促銷費用).
(1)將2014年該廠的年銷售利潤(萬元)表示為年廣告促銷費用(萬元)的函數(shù);
(2)2014年廣告促銷費用投入多少萬元時,該廠將獲利最大?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知實數(shù)a≠0,函數(shù)f(x)=
(1) 若a=-3,求f(10),f(f(10))的值;
(2) 若f(1-a)=f(1+a),求a的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知二次函數(shù)f(x)=ax2+bx+c圖象的頂點為(-1,10),且方程ax2+bx+c=0的兩根的平方和為12,求二次函數(shù)f(x)的表達式.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com