某種產(chǎn)品的廣告費用支出x(千元)與銷售額y(10萬元)之間有如下的對應(yīng)數(shù)據(jù):
x 2 4 5 6 8
y 3 4 6 5 7
(Ⅰ)請畫出上表數(shù)據(jù)的散點圖;
(Ⅱ)請根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出銷售額y關(guān)于費用支出x的線性回歸方程
y
=
b
x+
a

(III)當(dāng)廣告費用支出1萬元時,預(yù)測一下該商品的銷售額為多少萬元?
(參考值:2×3+4×4+5×6+6×5+8×7=138,22+42+52+62+82=145)
分析:(I)根據(jù)表中所給的五對數(shù)據(jù),得到五個有序數(shù)對,在平面直角坐標(biāo)系中畫出點,得到散點圖.
(II)先做出橫標(biāo)和縱標(biāo)的平均數(shù),得到這組數(shù)據(jù)的樣本中心點,利用最小二乘法做出線性回歸方程的系數(shù),再做出a的值,協(xié)會粗線性回歸方程.
(III)把所給的x的值代入線性回歸方程,求出y的值,這里的y的值是一個預(yù)報值,或者說是一個估計值.
解答:解:(I)根據(jù)表中所給的五對數(shù)據(jù),得到五個有序數(shù)對,在平面直角坐標(biāo)系中畫出點,得到散點圖.

(II)∵
.
x
=
2+4+5+6+8
5
=5,
.
y
=
30+40+60+50+70
5
=5,
2×3+4×4+5×6+6×5+8×7=138,22+42+52+62+82=145
∴b=
5
i=1
xiyi-5
.
x
.
y
5
i=1
x
2
i
-5
.
x
2
=0.65
∴a=
.
y
-b
.
x
=5-0.65×5=1.75
∴回歸直線方程為y=0.65x+1.75
(III)當(dāng)x=1時,預(yù)報y的值為y=1×0.65+1.75=8.25.即銷售額為8.25萬元
點評:本題考查線性回歸方程的求法和應(yīng)用,本題解題的關(guān)鍵是看出這組變量是線性相關(guān)的,進而正確運算求出線性回歸方程的系數(shù),本題是一個基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

某種產(chǎn)品的廣告費用支出x(萬元)與銷售額y(萬元)之間有如下的對應(yīng)數(shù)據(jù):
x 2 4 5 6 8
y 30 40 60 50 70
(1)畫出散點圖;
(2)求回歸直線方程;
(3)據(jù)此估計廣告費用為9萬元時,銷售收入y的值.
參考公式:回歸直線的方程
?
y
=bx+a,其中b=
n
i=1
(x1-
.
x
)
(yi-
.
y
)
=
n
i=1
xiyi-n
.
x
.
y
n
i=1
xi2-n
.
x
2
,a=
.
y
-b
.
x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某種產(chǎn)品的廣告費用支出x萬元與銷售額y萬元之間有如下的對應(yīng)數(shù)據(jù):
x 2 4 5 6 8
y 20 30 50 50 70
(1)畫出上表數(shù)據(jù)的散點圖;
(2)根據(jù)上表提供的數(shù)據(jù),求出y關(guān)于x的線性回歸方程;
(3)據(jù)此估計廣告費用為10萬元時,所得的銷售收入.(參考數(shù)值:
5
i=1
xi2=145
,
5
i=1
xiyi=1270
,)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某種產(chǎn)品的廣告費用支出x(萬元)與銷售額y(萬元)之間有如下的對應(yīng)數(shù)據(jù):
x 2 4 5 6 8
y 30 40 60 50 70
(1)畫出散點圖;
(2)求回歸直線方程;
(3)據(jù)此估計廣告費用為9萬元時,銷售收入y的值.(參考公式:線性回歸方程系數(shù)公式:
b
=
n
i=1
x
i
y
i
-n
.
xy
n
i=1
x
i
2
-n
.
x
2
a
=
.
y
-
b
.
x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某種產(chǎn)品的廣告費用支出x(萬元)與銷售額y(萬元)之間有如下的對應(yīng)數(shù)據(jù):
x 2 4 5 6 8
y 30 40 60 50 70
(1)求回歸直線方程;
(2)據(jù)此估計廣告費用為9萬元時,銷售收入y的值.
參考公式:回歸直線的方程
y
=
b
x+
a
,其中
b
=
n
i=1
(xi-
.
x
)(yi-
.
y
)
n
i=1
(xi-
.
x
)2
=
n
i=1
xiyi-n
.
x
.
y
n
i=1
x
2
i
-n
.
x
2
,
a
=
.
y
-
b
.
x
,
.
x
=
1
n
n
i=1
xi
,
.
y
=
1
n
n
i=1
yi

查看答案和解析>>

同步練習(xí)冊答案