精英家教網 > 高中數學 > 題目詳情
關于函數f(x)=4sin(2x+
π
3
)(x∈R),有下列命題:
①函數y=f(x)的表達式可改寫為y=4cos(2x-
π
6
);
②函數y=f(x)的最小正周期為2π;
③函數y=f(x)的圖象關于點(-
π
6
,0)對稱;
④函數 y=f(x)的圖象關于直線x=-
π
6
對稱;
⑤若f(x1)=f(x2)=0,則必有:x1-x2=
2
,k∈Z.
其中正確的是
①③⑤
①③⑤
(填序號,多填漏填均不給分)
分析:對①利用誘導公式sin(x+
π
2
)=cosx 驗證即可;
根據f(x)=4sin(2x+
π
3
)的最小正周期是π判斷②是否正確;
令x=-
π
6
,計算2x+
π
3
的值來驗證③④是否正確;
根據正弦函數的圖象特征判斷⑤是否正確.
解答:解:∵4cos(2x-
π
6
)=4sin(
π
2
+2x-
π
6
)=4sin(2x+
π
3
),∴①√;
∵f(x)=4sin(2x+
π
3
)(x∈R),的最小正周期是π,∴②×;
∵x=-
π
6
,2x+
π
3
=0,∴點(-
π
6
,0)是對稱中心,∴③√;
∵x=-
π
6
,2x+
π
3
=0,∴線x=-
π
6
不是對稱軸,∴④×;
∵函數f(x)=4sin(2x+
π
3
)(x∈R),的最小正周期是π,∴|x1-x2|最小為
π
2
,∴⑤√;
故答案是①③⑤
點評:本題考查了y=Asin(ωx+φ)的圖象與性質,它的最小正周期T=
|ω|
;值域是[-A,A],對稱軸方程x,滿足ωx+φ=kπ+
π
2
;對稱中心橫坐標x,滿足ωx+φ=kπ,k∈Z.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

關于函數f(x)=2(sinx-cosx)cosx的四個結論:
P1:最大值為
2

P2:最小正周期為π;
P3:單調遞增區(qū)間為[kπ-
π
8
,kπ+
3
8
π],k∈
Z;
P4:圖象的對稱中心為(
k
2
π+
π
8
,-1),k∈
Z.
其中正確的有( 。

查看答案和解析>>

科目:高中數學 來源: 題型:

關于函數f(x)=sin2x-cos2x有下列命題:
①函數y=f(x)的周期為π;                
②直線x=
π
4
是y=f(x)圖象的一條對稱軸;
點(
π
8
,0)
是y=f(x)圖象的一個對稱中心;
(-
π
8
8
)
是函數y=f(x)的一個單調遞減區(qū)間.
其中真命題的序號是
①③
①③

查看答案和解析>>

科目:高中數學 來源: 題型:

(2008•鹽城一模)給出定義:若m-
1
2
<x≤m+
1
2
(其中m為整數),則m叫做離實數x最近的整數,記作{x},即 {x}=m.在此基礎上給出下列關于函數f(x)=|x-{x}|的四個命題:
(1)y=f(x)的定義域是R,值域是[0,
1
2
]
(2)y=f(x)是周期函數,最小正周期是1
(3)y=f(x)的圖象關于直線x=
k
2
(k∈Z)對稱
(4)y=f(x)在[-
1
2
,
1
2
]
上是增函數   
則其中真命題是
(1)、(2)、(3)
(1)、(2)、(3)

查看答案和解析>>

科目:高中數學 來源: 題型:

已知下表為函數f(x)=ax3+cx+d部分自變量取值及其對應函數值,為便于研究,相關函數值非整數值時,取值精確到0.01.
x 3.27 1.57 -0.61 -0.59 0.26 0.42 -0.35 -0.56 0 4.25
y -101.63 -10.04 0.07 0.026 0.21 0.20 -0.22 -0.03 0 -226.05
下列關于函數f(x)的敘述:
(1)f(x)為奇函數;                          (2)f(x)在[0.55,0.6]上必有零點
(3)f(x)在(-∞,-0.35]上單調遞減;         (4)a<0
其中所有正確命題的個數是( 。

查看答案和解析>>

科目:高中數學 來源:2014屆福建省四地六校高三上學期第一次月考文科數學試卷(解析版) 題型:填空題

關于函數f(x)= 4 sin(2x+)(),有下列命題:

①由可得必是的整數倍;

的表達式可改寫為;

的圖象關于點對稱;

的圖象關于直線對稱.

其中正確命題的序號是________________.

 

查看答案和解析>>

同步練習冊答案