(2008•靜安區(qū)一模)已知長方體的表面積是24cm2,過同一頂點的三條棱長之和是6cm,則它的對角線長是( 。
分析:設(shè)出長方體的三度,利用長方體的表面積和棱長公式,得到關(guān)系式,然后求出長方體的對角線的長.
解答:解:設(shè)長方體的三度為,a,b,c;
由題意可知,2(ab+bc+ac)=24…①
a+b+c=6,…②,
2-①可得:a2+b2+c2=12,所以長方體的對角線的長為:
a2+b2+c2
=
12
=2
3

故選D.
點評:本題是基礎(chǔ)題,考查長方體的棱長與表面積、體積的關(guān)系,考查計算能力.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

(2008•靜安區(qū)一模)(理)設(shè)
a
=(cosα,(λ-1)sinα),
b
=(cosβ,sinβ),(λ>0,0<α<β<
π
2
)
是平面上的兩個向量,若向量
a
+
b
a
-
b
相互垂直,
(1)求實數(shù)λ的值;
(2)若
a
b
=
4
5
,且tanα=
4
3
,求α的值(結(jié)果用反三角函數(shù)值表示)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2008•靜安區(qū)一模)執(zhí)行下面的程序框圖,如果輸入的k=50,那么輸出的S=
2548
2548

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2008•靜安區(qū)一模)(文)已知
a
=(cosα,3sinα),
b
=(3cosβ,sinβ),(0<β<α<
π
2
)
是平面上的兩個向量.
(1)試用α、β表示
a
b
;
(2)若
a
b
=
36
13
,且cosβ=
4
5
,求α的值(結(jié)果用反三角函數(shù)值表示)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2008•靜安區(qū)一模)下列以行列式表達的結(jié)果中,與sin(α-β)相等的是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2008•靜安區(qū)一模)計算:
lim
n→∞
(2n-
4n2+2n-1
2n+2
)
=
1
1

查看答案和解析>>

同步練習冊答案