【題目】已知橢圓的離心率為,且經(jīng)過點(diǎn).

1)求橢圓的方程;

2)過點(diǎn)的直線與橢圓交于不同兩點(diǎn)、,且滿足條件的點(diǎn)在橢圓上,求直線的方程.

【答案】1;(2.

【解析】

1)根據(jù)題意得出關(guān)于、的方程組,解出、的值,進(jìn)而可得出橢圓的標(biāo)準(zhǔn)方程;

2)設(shè)點(diǎn)、,設(shè)直線的方程為,將直線的方程與橢圓的方程聯(lián)立,列出韋達(dá)定理,求出點(diǎn)的坐標(biāo),再將點(diǎn)的坐標(biāo)代入橢圓方程,求出的值,進(jìn)而可得出直線的方程.

1)由橢圓的離心率為,點(diǎn)在橢圓上,

所以,解得,因此,橢圓的標(biāo)準(zhǔn)方程為

2)顯然直線的斜率存在,設(shè)直線的斜率為,

則直線l的方程為,設(shè),,,

消去

,解得.

所以,,

因?yàn)?/span>,所以,所以,點(diǎn)的坐標(biāo)為,

將點(diǎn)的坐標(biāo)代入橢圓的方程得,化簡得,解得.

故直線的方程為.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)fx)=|xa|+|x|a0).

1)若不等式fx)﹣| x|≥4x的解集為{x|x≤1},求實(shí)數(shù)a的值;

2)證明:fx

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,設(shè)點(diǎn)為橢圓的右焦點(diǎn),圓且斜率為的直線交圓兩點(diǎn),交橢圓于點(diǎn)兩點(diǎn),已知當(dāng)時(shí),

(1)求橢圓的方程.

(2)當(dāng)時(shí),求的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示的多面體中,底面為正方形,為等邊三角形,平面,,點(diǎn)是線段上除兩端點(diǎn)外的一點(diǎn).

1)若點(diǎn)為線段的中點(diǎn),證明:平面;

2)若二面角的余弦值為,試通過計(jì)算說明點(diǎn)的位置.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓C的離心率為且經(jīng)過點(diǎn)

1)求橢圓C的方程;

2)過點(diǎn)(0,2)的直線l與橢圓C交于不同兩點(diǎn)A、B,以OA、OB為鄰邊的平行四邊形OAMB的頂點(diǎn)M在橢圓C上,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)生為了測試煤氣灶燒水如何節(jié)省煤氣的問題設(shè)計(jì)了一個(gè)實(shí)驗(yàn),并獲得了煤氣開關(guān)旋鈕旋轉(zhuǎn)的弧度數(shù)與燒開一壺水所用時(shí)間的一組數(shù)據(jù),且作了一定的數(shù)據(jù)處理(如下表),得到了散點(diǎn)圖(如下圖).

表中,.

1)根據(jù)散點(diǎn)圖判斷,哪一個(gè)更適宜作燒水時(shí)間關(guān)于開關(guān)旋鈕旋轉(zhuǎn)的弧度數(shù)的回歸方程類型?(不必說明理由)

2)根據(jù)判斷結(jié)果和表中數(shù)據(jù),建立關(guān)于的回歸方程;

3)若單位時(shí)間內(nèi)煤氣輸出量與旋轉(zhuǎn)的弧度數(shù)成正比,那么,利用第(2)問求得的回歸方程知為多少時(shí),燒開一壺水最省煤氣?

附:對于一組數(shù)據(jù),其回歸直線的斜率和截距的最小二乘法估計(jì)值分別為,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(本小題滿分10分)選修4-5:不等式選講

已知函數(shù)f(x)=log2(|x+1|+|x﹣2|﹣m).

(1)當(dāng)m=7時(shí),求函數(shù)f(x)的定義域;

(2)若關(guān)于x的不等式f(x)≥2的解集是R,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】關(guān)于圓周率π,數(shù)學(xué)發(fā)展史上出現(xiàn)過許多很有創(chuàng)意的求法,如著名的浦豐實(shí)驗(yàn)和查理斯實(shí)驗(yàn).受其啟發(fā),我們也可以通過設(shè)計(jì)下面的實(shí)驗(yàn)來估計(jì)的值:先請全校名同學(xué)每人隨機(jī)寫下一個(gè)都小于的正實(shí)數(shù)對;再統(tǒng)計(jì)兩數(shù)能與構(gòu)成鈍角三角形三邊的數(shù)對的個(gè)數(shù);最后再根據(jù)統(tǒng)計(jì)數(shù)估計(jì)的值,那么可以估計(jì)的值約為(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)校需要從甲、乙兩名學(xué)生中選一人參加數(shù)學(xué)競賽,抽取了近期兩人次數(shù)學(xué)考試的成績,統(tǒng)計(jì)結(jié)果如下表:

第一次

第二次

第三次

第四次

第五次

甲的成績(分)

乙的成績(分)

(1)若從甲、乙兩人中選出一人參加數(shù)學(xué)競賽,你認(rèn)為選誰合適?請說明理由.

(2)若數(shù)學(xué)競賽分初賽和復(fù)賽,在初賽中有兩種答題方案:

方案一:每人從道備選題中任意抽出道,若答對,則可參加復(fù)賽,否則被淘汰.

方案二:每人從道備選題中任意抽出道,若至少答對其中道,則可參加復(fù)賽,否則被潤汰.

已知學(xué)生甲、乙都只會道備選題中的道,那么你推薦的選手選擇哪種答題方條進(jìn)人復(fù)賽的可能性更大?并說明理由.

查看答案和解析>>

同步練習(xí)冊答案