2.設(shè)全集U=R,集合$A=\{x|\frac{x}{x+3}<0\},B=\{x|x≤-1\}$,則集合A∩(∁UB)=( 。
A.{x|x>0}B.{x|x<-3}C.{x|-3<x≤-1}D.{x|-1<x<0}

分析 分別求出集合A,∁UB,從而求出其交集.

解答 解:由$\frac{x}{x+3}$<0,即x(x+3)<0,解得-3<x<0,則A={x|-3<x<0},
∵B={x|x≤-1},
∴∁UB={x|x>-1},
∴A∩(∁UB)={x|-1<x<0},
故選:D

點(diǎn)評(píng) 此題考查的是集合的交并補(bǔ)運(yùn)算問(wèn)題,在解答的過(guò)程當(dāng)中充分體現(xiàn)了解不等式的知識(shí)、交并補(bǔ)運(yùn)算的知識(shí)以及問(wèn)題轉(zhuǎn)化的思想.值得同學(xué)們體會(huì)反思.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.過(guò)橢圓$\frac{x^2}{4}$+${\frac{y}{3}^2}$=1的右焦點(diǎn)作斜率為2的直線交橢圓于A,B兩點(diǎn),求線段|AB|的長(zhǎng)度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.已知命題p1:?x∈R,使得x2+x+1<0;命題p2:?x∈[-1,2],使得x2-1≥0,則下列命題是真命題的是(  )
A.(¬p1)∧p2B.p1∨p2C.p1∧(¬p2).D.(¬p1)∨(¬p2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.下列函數(shù)中,最小值為2的是( 。
A.y=x+$\frac{1}{x}$B.y=sinx+$\frac{1}{sinx}$,x∈(0,$\frac{π}{2}$)
C.y=4x+2x,x∈[0,+∞)D.y=$\frac{{x}^{2}+3}{\sqrt{{x}^{2}+2}}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.“$φ=\frac{π}{2}$”是“函數(shù)f(x)=sin(2x+φ)是偶函數(shù)”的(  )
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.函數(shù)$f(x)=\frac{a}{3}{x^3}+b{x^2}+cx+d\;\;({a>0})$,且方程f'(x)-9x=0的兩個(gè)根分別為1,4.
(1)當(dāng)a=3且曲線y=f(x)過(guò)原點(diǎn)時(shí),求f(x)的解析式;
(2)若f(x)在R上單調(diào),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.?dāng)?shù)列{an}的前n項(xiàng)和為Sn=2n+1-2,數(shù)列{bn}是首項(xiàng)為a1,公差為d(d≠0)的等差數(shù)列,且b1,b3,b11成等比數(shù)列.
(1)求數(shù)列{an}與{bn}的通項(xiàng)公式;
(2)設(shè)cn=$\frac{_{n}}{{a}_{n}}$,求數(shù)列{cn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.在如圖所示的三棱錐ABC-A1B1C1中,AA1⊥底面ABC,D,E分別是BC,A1B1的中點(diǎn).
(1)求證:DE∥平面ACC1A1
(2)若AB⊥BC,AB=BC,∠ACB1=60°,求直線BC與平面AB1C所成角的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.如圖,過(guò)點(diǎn)B(0,-b)作橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的弦,求這些弦中的最大弦長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案