的直徑,點上的動點(點不與重合),過動點的直線垂直于所在的平面,分別是的中點,則下列結(jié)論錯誤的是  
A.直線平面B.直線平面
C.D.
D
解:利用直徑所對的圓周角為直角,以及線面垂直的性質(zhì)定理,可以判定,正確的命題為直線平面和 直線平面
以及,而選項D不成立。
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:不詳 題型:解答題

(本題滿分14分)如圖,已知平面平面,分別是棱長為1與2的正三角形,//,四邊形為直角梯形,//,,點的重心,中點,,

(Ⅰ)當時,求證://平面
(Ⅱ)若直線所成角為,試求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分12分)
如圖,在四棱錐中,底面是矩形,平面,,
,是線段上的點,是線段上的點,且

(Ⅰ)當時,證明平面;
(Ⅱ)是否存在實數(shù),使異面直線所成的角為?若存在,試求出的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分12分)
已知斜三棱柱ABC—A1B1C1的底面是正三角形,側(cè)面ABB1A1是菱形,且, M是A1B1的中點,

(1)求證:平面ABC;
(2)求二面角A1—BB­1—C的余弦值。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分12分)在三棱錐中,,平面平面,的中點.
(1) 證明:;
(2) 求所成角的大小.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖在四棱錐中,底面是菱形,,底面,的中點,中點。

(1)求證:∥平面;
(2)求證:平面⊥平面;
(3)求與平面所成的角。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,四棱錐的底面是矩形,,且側(cè)面是正三角形,平面平面,

(Ⅰ)求證:;
(Ⅱ)在棱上是否存在一點,使得二面角的大小為45°.若存在,試求的值,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,四棱錐中,平面,底面是直角梯形,,,中點.

(1) 求證:平面PDC平面PAD;
(2) 求證:BE∥平面PAD;
(3)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(13分)如圖分別是正三棱臺ABC-A1B1C1的直觀圖和正視圖,O,O1分別是上下底面的中心,E是BC中點.
(1)求正三棱臺ABC-A1B1C1的體積;
(2)求平面EA1B1與平面A1B1C1的夾角的余弦;
(3)若P是棱A1C1上一點,求CP+PB1的最小值.

查看答案和解析>>

同步練習冊答案