(2013•淄博一模)已知拋物線x2=4y上一點(diǎn)P到焦點(diǎn)F的距離是5,則點(diǎn)P的橫坐標(biāo)是
±4
±4
分析:根據(jù)點(diǎn)P到焦點(diǎn)的距離為5利用拋物線的定義可推斷出P到準(zhǔn)線距離也為5.利用拋物線的方程求得準(zhǔn)線方程,進(jìn)而可求得P的坐標(biāo).
解答:解:根據(jù)拋物線的定義可知P到焦點(diǎn)的距離為5,則其到準(zhǔn)線距離也為5.
又∵拋物線的準(zhǔn)線為y=-1,
∴P點(diǎn)的縱坐標(biāo)為5-1=4.
將y=4 代入拋物線方程得:4×4=x2,解得x=±4
故答案為:±4.
點(diǎn)評(píng):活用拋物線的定義是解決拋物線問題最基本的方法.拋物線上的點(diǎn)到焦點(diǎn)的距離,叫焦半徑.到焦點(diǎn)的距離常轉(zhuǎn)化為到準(zhǔn)線的距離求解.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•淄博一模)已知集合M={x|x2-5x<0},N={x|p<x<6},若M∩N={|2<x<q},則p+q等于(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•淄博一模)已知P是圓x2+y2=1上的動(dòng)點(diǎn),則P點(diǎn)到直線l:x+y-2
2
=0
的距離的最小值為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•淄博一模)某程序框圖如圖所示,該程序運(yùn)行后,輸出的x值為31,則a等于( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•淄博一模)設(shè)定義在R上的奇函數(shù)y=f(x),滿足對(duì)任意t∈R都有f(t)=f(1-t),且x∈[0,
1
2
]
時(shí),f(x)=-x2,則f(3)+f(-
3
2
)
的值等于( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•淄博一模)已知向量
p
m
=(sin(A-B),sin(
π
2
-A)),
p
n
=(1,2sinB),
p
m
p
n
=-sin2C,其中A,B,C分別為△ABC的三邊a,b,c所對(duì)的角.
(Ⅰ)求角C的大小;
(Ⅱ)若sinA+sinB=2sinC,且S△ABC=
3
,求邊c的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案