分析 若(3x2+a)(2x+b)≥0在(a,b)上恒成立,則3x2+a≥0,2x+b≥0或3x2+a≤0,2x+b≤0,結合一次函數(shù)和二次函數(shù)的圖象和性質(zhì),可得a,b的范圍,進而得到答案.
解答 解:∵(3x2+a)(2x+b)≥0在(a,b)上恒成立,
∴3x2+a≥0,2x+b≥0或3x2+a≤0,2x+b≤0,
①若2x+b≥0在(a,b)上恒成立,則2a+b≥0,即b≥-2a>0,
此時當x=0時,3x2+a=a≥0不成立,
②若2x+b≤0在(a,b)上恒成立,則2b+b≤0,即b≤0,
若3x2+a≤0在(a,b)上恒成立,則3a2+a≤0,即-$\frac{1}{3}$≤a≤0,
故b-a的最大值為$\frac{1}{3}$,
故答案為:$\frac{1}{3}$.
點評 本題考查的知識點是恒成立問題,二次函數(shù)的圖象和性質(zhì),分類討論思想,難度中檔.
科目:高中數(shù)學 來源: 題型:選擇題
A. | 3x-5y+13=0 | B. | 5x+3y-1=0 | C. | 5x+3y+1=0 | D. | 5x-3y+11=0 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | -1 | B. | 1 | C. | -$\frac{\sqrt{2}}{2}$ | D. | $\frac{\sqrt{2}}{2}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com