如圖,幾何體A1C1-ABC中,四邊形AA1C1C為平行四邊形,且面AA1C1C⊥面ABCAA1=A1C=AC=2,AB=BC,AB⊥BC,O是AC中點.
(Ⅰ)證明:A1O⊥平面ABC;
(Ⅱ)求直線BC1與底面ABC所成角的正弦值.

【答案】分析:(1)由AA1=A1C=AC,知△AA1C是等邊三角形,由O是AC中點,知A1O⊥AC,由此能夠證明A1O⊥面ABC.
(2)作C1E⊥AC,交AC的延長線于點E,連接BE,則C1E∥A1O,從而得到C1E⊥面ABC,∠C1BE就是直線BC1與底面ABC所成角.由此能求出直線BC1與底面ABC所成角的正弦值.
解答:(1)證明:∵AA1=A1C=AC,∴△AA1C是等邊三角形,
∵O是AC中點,∴A1O⊥AC,
∵AC是面AA1C1C和面ABC的交線,且面AA1C1C⊥面ABC,
又∵A1O?面AA1C1C,
∴A1O⊥面ABC.
(2)解:作C1E⊥AC,交AC的延長線于點E,連接BE,
則C1E∥A1O,∴C1E⊥面ABC,
∴∠C1BE就是直線BC1與底面ABC所成角.
∵四邊形AA1C1C為平行四邊形,且面AA1C1C⊥面ABC,
AA1=A1C=AC=2,AB=BC,AB⊥BC,O是AC中點.
∴C1E=A1O=,AB=BC=
∴C1O==,BO=1,
∴BC1==2,
∴sin∠C1BE===
點評:本題考查直線與平面垂直的證明,考查直線與平面所成角的正弦值的求法,解題時要認真審題,注意等價轉(zhuǎn)化思想的合理運用.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)三棱錐被平行于底面ABC的平面所截得的幾何體如圖所示,截面為A1B1C1,∠BAC=90°,A1A⊥平面ABC,A1A=
3
AB=
2
,AC=2,A1C1=1,
BD
DC
=
1
2

(Ⅰ)證明:平面A1AD⊥平面BCC1B1
(Ⅱ)求二面角A-CC1-B的大小.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,幾何體A1C1-ABC中,四邊形AA1C1C為平行四邊形,且面AA1C1C⊥面ABCAA1=A1C=AC=2,AB=BC,AB⊥BC,O是AC中點.
(Ⅰ)證明:A1O⊥平面ABC;
(Ⅱ)求直線BC1與底面ABC所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•寶雞模擬)在如圖所示的幾何體中,四邊形ACC1A1是矩形,F(xiàn)C1∥BC,EF∥A1C1,∠BCC1=90°,點A、B、E、A1在一個平面內(nèi),AB=BC=CC1=2,AC=2
2

(1)證明:A1E∥AB;
(2)若A1E=C1F=1,求平面BEF與平面ABC所成夾角的正切值.

查看答案和解析>>

科目:高中數(shù)學 來源:2011-2012學年浙江省紹興一中高二(上)期末數(shù)學試卷(文科)(解析版) 題型:解答題

如圖,幾何體A1C1-ABC中,四邊形AA1C1C為平行四邊形,且面AA1C1C⊥面ABCAA1=A1C=AC=2,AB=BC,AB⊥BC,O是AC中點.
(Ⅰ)證明:A1O⊥平面ABC;
(Ⅱ)求直線BC1與底面ABC所成角的正弦值.

查看答案和解析>>

同步練習冊答案