【題目】設(shè)數(shù)列{an}的前n項(xiàng)和為Sn , 若S2=4,an+1=2Sn+1,n∈N* , 則a1= , S5= .
【答案】1;121
【解析】解:由n=1時(shí),a1=S1 , 可得a2=2S1+1=2a1+1,
又S2=4,即a1+a2=4,
即有3a1+1=4,解得a1=1;
由an+1=Sn+1﹣Sn , 可得
Sn+1=3Sn+1,
由S2=4,可得S3=3×4+1=13,
S4=3×13+1=40,
S5=3×40+1=121.
所以答案是:1,121.
【考點(diǎn)精析】根據(jù)題目的已知條件,利用數(shù)列的定義和表示的相關(guān)知識(shí)可以得到問(wèn)題的答案,需要掌握數(shù)列中的每個(gè)數(shù)都叫這個(gè)數(shù)列的項(xiàng).記作an,在數(shù)列第一個(gè)位置的項(xiàng)叫第1項(xiàng)(或首項(xiàng)),在第二個(gè)位置的叫第2項(xiàng),……,序號(hào)為n的項(xiàng)叫第n項(xiàng)(也叫通項(xiàng))記作an.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】命題“若x,y都是偶數(shù),則x+y也是偶數(shù)”的逆否命題是( )
A.若x+y是偶數(shù),則x與y不都是偶數(shù)
B.若x+y是偶數(shù),則x與y都不是偶數(shù)
C.若x+y不是偶數(shù),則x與y不都是偶數(shù)
D.若x+y不是偶數(shù),則x與y都不是偶數(shù)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】有以下四個(gè)結(jié)論:①lg(lg 10)=0;②ln(ln e)=0;③若10=lg x,則x=100;④若e=ln x,則x=e2.其中正確的是( )
A. ①③ B. ②④ C. ①② D. ③④
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知實(shí)數(shù)a,b,c.( 。
A.若|a2+b+c|+|a+b2+c|≤1,則a2+b2+c2<100
B.若|a2+b+c|+|a2+b﹣c|≤1,則a2+b2+c2<100
C.若|a+b+c2|+|a+b﹣c2|≤1,則a2+b2+c2<100
D.若|a2+b+c|+|a+b2﹣c|≤1,則a2+b2+c2<100
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知正整數(shù)數(shù)列{an}對(duì)任意p,q∈N* , 都有ap+q=ap+aq , 若a2=4,則a9=( )
A.6
B.9
C.18
D.20
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】若f(n)為n2+1(n∈N*)的各位數(shù)字之和,如62+1=37,f(6)=3+7=10,f1(n)=f(n),f2(n)=f(f1(n)),…,fk+1(n)=f(fk(n)),k∈N*,則f2016(4)=________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)集合A={x|1≤x≤5},Z為整數(shù)集,則集合A∩Z中元素的個(gè)數(shù)是( )
A.6
B.5
C.4
D.3
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】若數(shù)據(jù)組k1 , k2 , …,k8的平均數(shù)為3,方差為3,則2(k1+3),2(k2+3),…,2(k8+3)的平均數(shù)為 , 方差為 .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com