1.設(shè)集合A={1,2,3,4},B={x|x2≤4},則A∩B=(  )
A.{1,2}B.{0,1}C.{0,1,2}D.{1,2,3,4}

分析 求出B中x的范圍確定出B,找出A與B的交集即可.

解答 解:由B中不等式變形得:(x+2)(x-2)≤0,
解得:-2≤x≤2,即B=[-2,2],
∵A={1,2,3,4},
∴A∩B={1,2},
故選:A.

點(diǎn)評 此題考查了交集及其運(yùn)算,熟練掌握交集的定義是解本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.平面截球得到的半徑是3的圓面,球心到這個平面的距離是4,則該球的表面積是( 。
A.20πB.$\frac{416\sqrt{3}π}{3}$C.$\frac{500π}{3}$D.100π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.設(shè)△ABC的內(nèi)角A、B、C的對邊分別為a、b、c,若a=1,c=$\sqrt{3}$,cosA=$\frac{\sqrt{3}}{2}$,且b<c,則b=( 。
A.1B.$\frac{\sqrt{3}}{2}$C.$\sqrt{2}$D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知拋物線y2=4x的準(zhǔn)線與x軸交于點(diǎn)P,過點(diǎn)P且斜率為k(k>0)的直線l與拋物線交于A,B兩點(diǎn),F(xiàn)為拋物線的焦點(diǎn),若|FB|=2|FA|,則k的值為( 。
A.$\frac{1}{3}$B.$\frac{{\sqrt{2}}}{3}$C.$\frac{2}{3}$D.$\frac{{2\sqrt{2}}}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.函數(shù)f(x)=3sin2x+2sinxcosx+cos2x-2的單調(diào)遞減區(qū)間是( 。
A.$[kπ+\frac{3π}{8},kπ+\frac{7π}{8}],k∈Z$B.$[2kπ+\frac{3π}{8},2kπ+\frac{7π}{8}],k∈Z$
C.$[2kπ-\frac{π}{8},2kπ+\frac{3π}{8}],k∈Z$D.$[kπ-\frac{π}{8},kπ+\frac{3π}{8}],k∈Z$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.雙曲線C的中心在原點(diǎn),右焦點(diǎn)為F($\frac{2\sqrt{3}}{3}$,0),漸近線方程為y=±$\sqrt{3}$x.
(1)求雙曲線C的方程;
(2)設(shè)點(diǎn)P是雙曲線上任一點(diǎn),該點(diǎn)到兩漸近線的距離分別為m、n.證明m•n是定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.一個幾何體的三視圖是如圖所示的邊長為2的正方形,其中P,Q,S,T為各邊的中點(diǎn),則此幾何體的表面積是( 。
A.21B.$\frac{43}{2}$C.$\frac{45}{2}$D.23

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.設(shè)雙曲線C經(jīng)過點(diǎn)$(1,\frac{{3\sqrt{5}}}{2})$,且漸近線的方程為$y=±\frac{3}{2}x$,
求(1)雙曲線C的方程;
(2)雙曲線C的離心率及頂點(diǎn)坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.在四棱柱ABCD-A1B1C1D1中,底面ABCD為矩形,AB=3,AD=1,AA1=2,且∠BAA1=∠DAA1=60°.則異面直線AC與BD1所成角的余弦值為$\frac{7\sqrt{10}}{40}$.

查看答案和解析>>

同步練習(xí)冊答案