已知點M與兩個定點E(8,0),F(xiàn)(5,0)的距離之比等于2,設(shè)點M的軌跡為C.
(Ⅰ)求曲線C的方程;
(Ⅱ)若直線l:y=kx與曲線C相交于不同的兩點A、B.
(1)求k的取值范圍;
(2)分別取k=0及k=
1
2
,在弦AB上,確定點Q的坐標,使
|AQ|
|QB|
=
|OA|
|OB|
(|OA|<|OB|)成立.由此猜想出一般結(jié)論,并給出證明.
(Ⅰ)設(shè)M(x,y),依題意有:
|ME|
|MF|
=2
,
(x-8)2+y2
(x-5)2+y2
=2
,(2分)
整理得曲線C的方程為(x-4)2+y2=4.(4分)
(Ⅱ)(1)由(Ⅰ)知,要使線l:y=kx與曲線C相交于不同的兩點,只需曲線C的圓心(4,0)到直線l的距離小于圓的半徑2.
|4k|
k2+1
<2
,
解得,-
3
3
<k<
3
3
.(7分)
(2)設(shè)A(x1,y1),B(x2,y2),Q(x0,y0),則有0<x1<x0<x2
當k=0時,A(2,0),B(6,0),
|AQ|
|QB|
=
|OA|
|OB|
知,
x0-2
6-x0
=
2
6
,
∴x0=3,即點Q的坐標為(3,0).(8分)
當k=
1
2
時,由
y=
1
2
x
(x-4)2+y2=4

得方程5x2-32x+48=0,∴x1+x2=
32
5
,x1x2=
48
5

|AQ|
|QB|
=
|OA|
|OB|
知,
x0-x1
x2-x0
=
x1
x2
,
整理得x0=
2x1x2
x1+x2
=3
,∴y0=
3
2

∴即點Q的坐標為(3,
3
2
).(10分)
猜想,點Q在直線x=3上.(11分)
證明如下:
方法1,由
y=kx
(x-4)2+y2=4

得(1+k2)x2-8x+12=0,(12分)
x1+x2=
8
1+k2
①,x1x2=
12
1+k2

|AQ|
|QB|
=
|OA|
|OB|
知,
x0-x1
x2-x0
=
x1
x2

整理得x0=
2x1x2
x1+x2
=3

即點Q在定直線上,這條直線的方程是x=3.(15分)
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知點M與兩個定點E(8,0),F(xiàn)(5,0)的距離之比等于2,設(shè)點M的軌跡為C.
(Ⅰ)求曲線C的方程;
(Ⅱ)若直線l:y=kx與曲線C相交于不同的兩點A、B.
(1)求k的取值范圍;
(2)分別取k=0及k=
1
2
,在弦AB上,確定點Q的坐標,使
|AQ|
|QB|
=
|OA|
|OB|
(|OA|<|OB|)成立.由此猜想出一般結(jié)論,并給出證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2009•浦東新區(qū)二模)已知
i
=(1,0),
c
=(0,
2
)
,若過定點A(0,
2
)
、以
i
c
(λ∈R)為法向量的直線l1與過點B(0,-
2
)
c
i
為法向量的直線l2相交于動點P.
(1)求直線l1和l2的方程;
(2)求直線l1和l2的斜率之積k1k2的值,并證明必存在兩個定點E,F(xiàn),使得|
PE
|+|
PF
|
恒為定值;
(3)在(2)的條件下,若M,N是l:x=2
2
上的兩個動點,且
EM
FN
=0
,試問當|MN|取最小值時,向量
EM
+
FN
EF
是否平行,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2009-2010學(xué)年北京市豐臺區(qū)高三(上)期末數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

已知點M與兩個定點E(8,0),F(xiàn)(5,0)的距離之比等于2,設(shè)點M的軌跡為C.
(Ⅰ)求曲線C的方程;
(Ⅱ)若直線l:y=kx與曲線C相交于不同的兩點A、B.
(1)求k的取值范圍;
(2)分別取k=0及k=,在弦AB上,確定點Q的坐標,使(|OA|<|OB|)成立.由此猜想出一般結(jié)論,并給出證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:《第2章 圓錐曲線與方程》2010年單元測試卷(4)(解析版) 題型:解答題

已知點M與兩個定點E(8,0),F(xiàn)(5,0)的距離之比等于2,設(shè)點M的軌跡為C.
(Ⅰ)求曲線C的方程;
(Ⅱ)若直線l:y=kx與曲線C相交于不同的兩點A、B.
(1)求k的取值范圍;
(2)分別取k=0及k=,在弦AB上,確定點Q的坐標,使(|OA|<|OB|)成立.由此猜想出一般結(jié)論,并給出證明.

查看答案和解析>>

同步練習(xí)冊答案