設D、E、F分別是△ABC的三邊BC、CA、AB上的點且數(shù)學公式,數(shù)學公式,則數(shù)學公式數(shù)學公式


  1. A.
    同向平行
  2. B.
    反向平行
  3. C.
    互相垂直
  4. D.
    既不垂直也不平行
A
分析:根據(jù)平面向量基本定理和向量的線性運算,將分別用或其相反向量的線性組合來表示,再加得到=,由此即可得到本題答案.
解答:∵,,
=,可得=
同理可得
=+()+(
=()+()+()=
由此可得:平行且同向
故選:A
點評:本題給出三角形ABC三邊上的三等分點,求向量的關系,著重考查了平面向量基本定理和向量的線性運算法則等知識,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

設D、E、F分別是△ABC的三邊BC、CA、AB上的點,且
DC
=2
BD
,
CE
=2
EA
,
AF
=2
FB
,則
AD
+
BE
+
CF
BC
( 。
A、反向平行
B、同向平行
C、互相垂直
D、既不平行也不垂直

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)設D,E,F(xiàn)分別是△ABC的邊BC,CA,AB上的點,且AF=
1
2
AB
BD=
1
3
BC
CE=
1
4
CA
.若記
AB
=m
,
CA
=n
,試用m,n表示
DE
,
EF
,
FD

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設D、E、F分別是△ABC的三邊BC、CA、AB上的點且
BD
=2
DC
EA
=2
CE
,
FB
=2
AF
,則
AD
+
BE
+
CF
BC
( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•南開區(qū)二模)設D、E、F分別是△ABC的三邊BC、CA、AB上的點,且
DC
=2
BD
,
CE
=2
EA
,
AF
=2
FB
,若
AD
+
BE
+
CF
BC
,則λ=
-
1
3
-
1
3

查看答案和解析>>

科目:高中數(shù)學 來源:2012年人教A版高中數(shù)學必修四2.3平面向量基本定理及坐標表示(一)(解析版) 題型:選擇題

DE、F分別是△ABC的三邊BC、CA、AB上的點,且=2,=2,=2,則 (  )

A.反向平行     B.同向平行

C.互相垂直     D.既不平行也不垂直

 

 

查看答案和解析>>

同步練習冊答案