【題目】選修:坐標(biāo)系與參數(shù)方程選講.
在平面直角坐標(biāo)系中,曲線(為參數(shù),實(shí)數(shù)),曲線
(為參數(shù),實(shí)數(shù)). 在以為極點(diǎn), 軸的正半軸為極軸的極坐標(biāo)系中,射線與交于兩點(diǎn),與交于兩點(diǎn). 當(dāng)時(shí), ;當(dāng)時(shí), .
(1)求的值; (2)求的最大值.
【答案】(1), ;(2)
【解析】試題分析:(1)將化為普通方程,再化為極坐標(biāo)方程,從而求出的值;(2)根據(jù)的極坐標(biāo)方程,將用三角函數(shù)表示,根據(jù)化一公式,轉(zhuǎn)化為三角函數(shù)的最值問題.
試題解析:解:(1)的普通方程為: ,其極坐標(biāo)方程為,
由題可得當(dāng)時(shí), ,∴,...................2分
的普通方程為: ,其極坐標(biāo)方程為,
由題可得當(dāng)時(shí), ,∴..................5分
(2)由①可得的方程分別為,
,
∵,∴的最大值為,
當(dāng)時(shí)取到...........................10分.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
(1)若函數(shù)在上單調(diào)遞減,在上單調(diào)遞增,求實(shí)數(shù)的值;
(2)是否存在實(shí)數(shù),使得在上單調(diào)遞減,若存在,試求的取值范圍;若不存在,請(qǐng)說明理由;
(3)若,當(dāng)時(shí)不等式有解,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在極坐標(biāo)系中,曲線的極坐標(biāo)方程為,曲線的極坐標(biāo)方程為,以極點(diǎn)為坐標(biāo)原點(diǎn),極軸為的正半軸建立平面直角坐標(biāo)系.
(1)求和的參數(shù)方程;
(2)已知射線,將逆時(shí)針旋轉(zhuǎn)得到,且與交于兩點(diǎn), 與交于兩點(diǎn),求取得最大值時(shí)點(diǎn)的極坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=x2+px+q與函數(shù)y=f(f(f(x)))有一個(gè)相同的零點(diǎn),則f(0)與f(1)( )
A.均為正值
B.均為負(fù)值
C.一正一負(fù)
D.至少有一個(gè)等于0
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知☉O:x2+y2=1和定點(diǎn)A(2,1),由☉O外一點(diǎn)P(a,b)向☉O引切線PQ,切點(diǎn)為Q,且滿足|PQ|=|PA|.
(1)求實(shí)數(shù)a,b間滿足的等量關(guān)系.
(2)求線段PQ長的最小值.
(3)若以P為圓心所作的☉P與☉O有公共點(diǎn),試求半徑取最小值時(shí)☉P的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)().
(1)當(dāng)時(shí),求函數(shù)的極值點(diǎn);
(2)若函數(shù)在區(qū)間上恒有,求實(shí)數(shù)的取值范圍;
(3)已知,且,在(2)的條件下,證明數(shù)列是單調(diào)遞增數(shù)列.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在多面體中,已知四邊形為矩形,為平行四邊形,點(diǎn)在平面內(nèi)的射影恰好為點(diǎn),的中點(diǎn)為,的中點(diǎn)為,且.
(1)求證:平面平面;
(2)求三棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=x|x﹣a|
(1)若函數(shù)y=f(x)+x在R上是增函數(shù),求實(shí)數(shù)a的取值范圍;
(2)若對(duì)任意x∈[1,2]時(shí),函數(shù)f(x)的圖像恒在y=1圖像的下方,求實(shí)數(shù)a的取值范圍;
(3)設(shè)a≥2時(shí),求f(x)在區(qū)間[2,4]內(nèi)的值域.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,拋物線經(jīng)過點(diǎn)A(0,4),B(1,0),C(5,0),其對(duì)稱軸與x 軸相交于點(diǎn)M.
(1)求拋物線的解析式和對(duì)稱軸;
(2)在拋物線的對(duì)稱軸上是否存在一點(diǎn)P,使△PAB的周長最。咳舸嬖,請(qǐng)求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由;
(3)連結(jié)AC,在直線AC的下方的拋物線上,是否存在一點(diǎn)N,使△NAC的面積最大?若存在,請(qǐng)求出點(diǎn)N的坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com