在△ABC中,c=4,a=2,C=45°,則sinA等于( 。
A、
1
2
B、
2
2
C、
2
4
D、
3
2
考點(diǎn):正弦定理
專題:解三角形
分析:直接利用正弦定理化簡求解即可.
解答: 解:由題意在△ABC中,c=4,a=2,C=45°,
由正弦定理:
a
sinA
=
c
sinC
可得sinA=
asinC
c
=
2
2
4
=
2
4

故選C.
點(diǎn)評(píng):本題考查正弦定理的應(yīng)用,基本知識(shí)的考查.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)a、b是直線,α是平面,給出下列四個(gè)命題:
①若a∥b,a∥α,則b∥α;
②若a∥α,b∥α,則a∥b;
③若a∥b,b與α相交,則a與α也相交;
④若a與b異面,a∥α,則b∥α.
其中真命題的序號(hào)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知直線l1:(3+a)x-4y=5-3a;l2:2x-(5+a)y=8
(1)a為何值時(shí),l1⊥l2?
(2)當(dāng)a=0時(shí),求圓C:x2+y2+4x-12y+39=0關(guān)于直線l1對(duì)稱的圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知二次函數(shù)f(x)=x2+bx+c滿足f(0)=3,f(-1)=f(3),求:
(1)b,c的值;
(2)若f(x)≥0求x的解集.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

圓O1:(x+1)2+(y-1)2=4與圓O2:(x-2)2+(y-4)2=9的位置關(guān)系為( 。
A、內(nèi)切B、外切C、相交D、相離

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

x>0,求y=4+2x+
3
x
的最小值,并求x的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知點(diǎn)P為橢圓x2+4y2=16上,則點(diǎn)P到直線y=x-5的最短距離為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)0<x<
3
2
,則函數(shù)y=x(3-2x)的最大值是(  )
A、
9
16
B、
9
4
C、2
D、
9
8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=2+log3x,x∈[1,9]
(1)求y=[f(x)]2+f(x2)的定義域;
(2)求y=[f(x)]2+f(x2)的最大值及當(dāng)y取最大值時(shí)x的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案