給出下列五個命題:
①某班級一共有52名學生,現(xiàn)將該班學生隨機編號,用系統(tǒng)抽樣的方法抽取一個容量為4的樣本,已知7號,33號,46號同學在樣本中,那么樣本另一位同學的編號為23;
②一組數(shù)據(jù)1、2、3、3、4、5的平均數(shù)、眾數(shù)、中位數(shù)相同;
③一組數(shù)據(jù)a、0、1、2、3,若該組數(shù)據(jù)的平均值為1,則樣本標準差為2;
④根據(jù)具有線性相關(guān)關(guān)系的兩個變量的統(tǒng)計數(shù)據(jù)所得的回歸直線方程為, ,則=1;
⑤如圖是根據(jù)抽樣檢測后得出的產(chǎn)品樣本凈重(單位:克)數(shù)據(jù)繪制的頻率分布直方圖,已知樣本中產(chǎn)品凈重小于100克的個數(shù)是36,則樣本中凈重大于或等于98克,并且小于104克的產(chǎn)品的個數(shù)是90.
其中真命題為:
A.①②④ | B.②④⑤ | C.②③④ | D.③④⑤ |
B
解析試題分析:①由系統(tǒng)抽樣的原理知抽樣的間隔為52÷4=13,故抽取的樣本的編號分別為7,7+13,7+13×2,
7+13×3,即7號、20號、33號、46號,①是假命題;②數(shù)據(jù)1,2,3,3,4,5的平均數(shù)為,中位數(shù)為3,眾數(shù)為3,都相同,②是真命題;③由題可知樣本的平均值為1,所以a+0+1+2+3=5,解得a=-1,故樣本的方差為 ,標準差為 ,③是假命題;④回歸直線方程為的直線過點,把(1,3)代入回歸直線方程得b=1.④是真命題;⑤產(chǎn)品凈重小于100克的頻率為(0.050+0.100)×2=0.300,設(shè)樣本容量為n,則 =0.300,則n=120,凈重大于或等于98克并且小于104克的產(chǎn)品的頻率為 ,故樣本中凈重大于或等于98克并且小于104克的產(chǎn)品的個數(shù)是120×0.75=90.⑤是真命題.綜上所述,真命題為:②④⑤,故選:B.
考點:1.命題的真假判斷與應(yīng)用;2.頻率分布直方圖;3.眾數(shù)、中位數(shù)、平均數(shù);4.線性回歸方程.
科目:高中數(shù)學 來源: 題型:單選題
設(shè)且,命題:函數(shù)在上是增函數(shù) ,命題:函數(shù)在上是減函數(shù),則是的( )
A.充分不必要條件 | B.必要不充分條件 |
C.充分必要條件 | D.既不充分也不必要條件 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:單選題
[2014·荷澤模擬]有以下命題:
①“若xy=1,則x,y互為倒數(shù)”的逆命題;
②“面積相等的三角形全等”的否命題;
③“若m≤1,則x2-2x+m=0有實數(shù)解”的逆否命題;
④“若A∩B=B,則A⊆B”的逆否命題.
其中真命題為( )
A.①② | B.②③ | C.④ | D.①②③ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:單選題
(2013•重慶)命題“對任意x∈R,都有x2≥0”的否定為( )
A.存在x0∈R,使得x02<0 | B.對任意x∈R,使得x2<0 |
C.存在x0∈R,都有 | D.不存在x∈R,使得x2<0 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:單選題
(2011•浙江)若a、b為實數(shù),則“0<ab<1”是“a<”或“b>”的( 。
A.充分而不必要條件 | B.必要而不充分條件 |
C.充分必要條件 | D.既不充分也不必要條件 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com