有5輛6噸的汽車,4輛4噸的汽車,要運(yùn)送最多的貨物,完成這項運(yùn)輸任務(wù)的線性目標(biāo)函數(shù)為
 
考點(diǎn):簡單線性規(guī)劃
專題:不等式的解法及應(yīng)用
分析:根據(jù)條件,結(jié)合線性規(guī)劃的有關(guān)定義,即可得到結(jié)論.
解答: 解:設(shè)6噸的汽車使用x量,使用4噸的汽車y量,運(yùn)送的貨物為z,
則目標(biāo)函數(shù)為z=6x+4y,(0≤x≤5,0≤y≤4,且x,y∈Z),
故答案為:z=6x+4y.
點(diǎn)評:本題主要考查線性規(guī)劃的應(yīng)用,根據(jù)條件建立目標(biāo)函數(shù)即可,比較基礎(chǔ).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

求函數(shù)的值域:y=|x+1|-|2x-1|

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列命題:
①直線y=2x在x,y軸上的截距相等;
②參數(shù)方程
x=3sinα
y=3cosα
為參數(shù))表示圓;
③世界上第一個把π計算到3.1415926<π<3.1415927的人是中國人劉徽;
④拋兩枚均勻的骰子,恰好出現(xiàn)一奇一偶的概率為
1
4
;
⑤滿足||PF1|-|PF2||=2a(a>0)的動點(diǎn)P的軌跡是雙曲線.
其中錯誤的命題的序號是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知變量滿足約束條件
0≤x≤1
y≤2
x≤y
,則目標(biāo)函數(shù)z=x+y的最大值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知A是角α終邊上一點(diǎn),且A點(diǎn)的坐標(biāo)為(
3
5
4
5
),則
1
2sinαcosα+cos2α
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列說法正確的有
 

(1)直線與平面所成的角α的范圍是[0°,90°]
(2)函數(shù)f(x)在區(qū)間(a,b)上連續(xù)可導(dǎo),則f′(x)>0是函數(shù)f(x)在區(qū)間(a,b)上為增函數(shù)充要條件
(3)已知F1,F(xiàn)2為兩定點(diǎn),|F1F2|=6動點(diǎn)P滿足|PF1|-|PF2|=4則動點(diǎn)P的軌跡為雙曲線的一支
(4)函數(shù)f(x)=x3-12x+24的單調(diào)增區(qū)間為:(-∞,-2)∪(2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=x+
2x-3
的值域為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若a>b,則下列不等式成立的是( 。
A、lna>lnb
B、0.3a>0.3b
C、a
1
2
b
1
2
D、
3a
3b

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
過點(diǎn)(0,4),離心率為
3
5

(1)求C的方程;
(2)求過點(diǎn)(3,0)且斜率為
4
5
的直線被C所截線段的長度.

查看答案和解析>>

同步練習(xí)冊答案