分析 (1)在△ABD中,AB=$\sqrt{3}$,AD=1,A=$\frac{5π}{6}$,由余弦定理得BD=$\sqrt{7}$.在△ABD中,由正弦定理得$\frac{BD}{sinA}$=$\frac{AB}{sin∠ADB}$,解得sin∠ADB.
(2)設(shè)∠CBD=α,由AD∥BC,可得∠ADB=∠CBD=α,可得sin$α=\frac{\sqrt{21}}{14}$.可得cosα=$\frac{5\sqrt{7}}{14}$,由∠BDC=$\frac{2π}{3}$,可得sinC=sin$(\frac{π}{3}-α)$.在△BCD中,由正弦定理得$\frac{\sqrt{7}}{\frac{\sqrt{21}}{7}}$=$\frac{BC}{sin\frac{2π}{3}}$,解得BC.由S△BCD=$\frac{1}{2}BD•BC$sinα,S△ABD=$\frac{1}{2}×AB×AD$sinA,可得四邊形ABCD的面積S.
解答 解:(1)在△ABD中,AB=$\sqrt{3}$,AD=1,A=$\frac{5π}{6}$,
由余弦定理得BD2=$(\sqrt{3})^{2}+{1}^{2}-2×\sqrt{3}×1×$cos$\frac{5π}{6}$,
解得BD=$\sqrt{7}$.
在△ABD中,由正弦定理得$\frac{BD}{sinA}$=$\frac{AB}{sin∠ADB}$,即$\frac{\sqrt{7}}{sin\frac{5π}{6}}$=$\frac{\sqrt{3}}{sin∠ADB}$,
解得sin∠ADB=$\frac{\sqrt{21}}{14}$.
(2)設(shè)∠CBD=α,
因?yàn)锳D∥BC,所以∠ADB=∠CBD=α,
所以sin$α=\frac{\sqrt{21}}{14}$.
因?yàn)?0<α<\frac{π}{2}$,所以cosα=$\frac{5\sqrt{7}}{14}$,…(5分)
因?yàn)椤螧DC=$\frac{2π}{3}$,
所以sinC=sin$(\frac{π}{3}-α)$=$\frac{\sqrt{3}}{2}cosα-\frac{1}{2}sinα$=$\frac{\sqrt{21}}{7}$,6分)
在△BCD中,由正弦定理得$\frac{\sqrt{7}}{\frac{\sqrt{21}}{7}}$=$\frac{BC}{sin\frac{2π}{3}}$,
解得BC=$\frac{7}{2}$. …(7分)
所以S△BCD=$\frac{1}{2}BD•BC$sinα=$\frac{1}{2}×\sqrt{7}$×$\frac{7}{2}$×$\frac{\sqrt{21}}{14}$=$\frac{7\sqrt{3}}{8}$,…(8分)
S△ABD=$\frac{1}{2}×AB×AD$sinA=$\frac{1}{2}×\sqrt{3}×1×sin\frac{5π}{6}$=$\frac{\sqrt{3}}{4}$,…(9分)
∴四邊形ABCD的面積S=$\frac{7\sqrt{3}}{8}+\frac{\sqrt{3}}{4}$=$\frac{9\sqrt{3}}{8}$,…(10分)
點(diǎn)評(píng) 本題考查了正弦定理余弦定理、三角函數(shù)的單調(diào)性與求值、和差公式,考查了推理能力與計(jì)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{{\sqrt{2}}}{2}$ | B. | $\frac{{\sqrt{3}}}{2}$ | C. | $\frac{{\sqrt{5}}}{2}$ | D. | $\frac{{\sqrt{10}}}{2}$ |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com