設(shè)A(2,
3
),B(3,
π
3
)是極坐標(biāo)系上兩點(diǎn),則|AB|=
 
分析:設(shè)極點(diǎn)為O,根據(jù)極坐標(biāo)可知求出OA,OB,∠AOB,最后根據(jù)余弦定理可求出|AB|.
解答:解:設(shè)極點(diǎn)為O,則OA=2,OB=3,∠AOB=
π
3

根據(jù)余弦定理可知|AB|2=|OA|2+|OB|2-2|OA||OB|cos
π
3
=7
∴|AB|=
7

故答案為:
7
點(diǎn)評(píng):本題主要考查了極坐標(biāo)系下兩點(diǎn)的距離,以及余弦定理的應(yīng)用,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)a,b是兩條直線,α,β是兩個(gè)平面,則下列命題成立的是(  )
(1)a⊥b,a⊥α,b?α則b∥α;
(2)a∥α,α⊥β則a⊥β;
(3)α⊥β,a⊥β則a∥α;
(4)a⊥b,a⊥α,b⊥β則α⊥β

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

甲、乙兩臺(tái)機(jī)床生產(chǎn)同一型號(hào)零件.記生產(chǎn)的零件的尺寸為t(cm),相關(guān)行業(yè)質(zhì)檢部門(mén)規(guī)定:若t∈(2.9,3.1],則該零件為優(yōu)等品;若t∈(2.8,2.9]∪(3.1,3.2],則該零件為中等品;其余零件為次品.現(xiàn)分別從甲、乙機(jī)床生產(chǎn)的零件中各隨機(jī)抽取50件,經(jīng)質(zhì)量檢測(cè)得到下表數(shù)據(jù):
尺寸 [2.7,2.8] (2.8,2.9] (2.9,3.0] (3.0,3.1] (3.1,3.2] (3.2,3.3]
甲機(jī)床零件頻數(shù) 2 3 20 20 4 1
乙機(jī)床零件頻數(shù) 3 5 17 13 8 4
(Ⅰ)設(shè)生產(chǎn)每件產(chǎn)品的利潤(rùn)為:優(yōu)等品3元,中等品1元,次品虧本1元.試根據(jù)樣本估計(jì)總體的思想,估算甲機(jī)床生產(chǎn)一件零件的利潤(rùn)的平均值;
(Ⅱ)對(duì)于這兩臺(tái)機(jī)床生產(chǎn)的零件,在排除其它因素影響的情況下,試根據(jù)樣本估計(jì)總體的思想,估計(jì)約有多大的把握認(rèn)為“零件優(yōu)等與否和所用機(jī)床有關(guān)”,并說(shuō)明理由.
參考公式:K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)
.參考數(shù)據(jù):
P(K2≥k0 0.25 0.15 0.10 0.05 0.025 0.010
k0 1.323 2.072 2.706 3.841 5.024 6.635

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)
a
,
b
,
c
是任意的非零向量,且相互不共線,有下列命題:
(1)(
a
b
c
-(
c
a
b
=0;
(2)|
a
|-|
b
|<|
a
-
b
|;
(3)(
b
c
a
-(
a
c
b
不與
c
垂直;
(4)(3
a
+4
b
)•(3
a
-4
b
)=9|
a
|2-16|
b
|2
其中,是真命題的有( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:上海模擬 題型:填空題

設(shè)A(2,
3
),B(3,
π
3
)是極坐標(biāo)系上兩點(diǎn),則|AB|=______.

查看答案和解析>>

同步練習(xí)冊(cè)答案