拋物線C1yx2(p>0)的焦點(diǎn)與雙曲線C2y21的右焦點(diǎn)的連線交C1于第一象限的點(diǎn)M.C1在點(diǎn)M處的切線平行于C2的一條漸近線,則p(  )

A. B. C. D.

 

D

【解析】拋物線C1的標(biāo)準(zhǔn)方程為:x22py,其焦點(diǎn)F,雙曲線C2的右焦點(diǎn)F(2,0),漸近線方程為:y±x.yxxp,故M.

F、F、M三點(diǎn)共線得p.

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(理)二輪專題復(fù)習(xí)知能提升演練選修4-4練習(xí)卷(解析版) 題型:選擇題

在極坐標(biāo)系中,圓ρ2cos θ的垂直于極軸的兩條切線方程分別為(  )

Aθ0(ρR)ρcosθ2 Bθ(ρR)ρcos θ2

Cθ(ρR)ρcos θ1 Dθ0(ρR)ρcos θ1

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(理)二輪專題復(fù)習(xí)知能提升演練1-7-2練習(xí)卷(解析版) 題型:選擇題

在長為12 cm的線段AB上任取一點(diǎn)C.現(xiàn)作一矩形,鄰邊長分別等于線段AC,CB的長,則該矩形面積小于32 cm2的概率為(  )

A. B. C. D.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(理)二輪專題復(fù)習(xí)知能提升演練1-6-3練習(xí)卷(解析版) 題型:填空題

橢圓1(a>b>0)的左、右頂點(diǎn)分別是AB,左、右焦點(diǎn)分別是F1F2.|AF1|,|F1F2||F1B|成等比數(shù)列,則此橢圓的離心率為________

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(理)二輪專題復(fù)習(xí)知能提升演練1-6-2練習(xí)卷(解析版) 題型:解答題

如圖,拋物線Ey24x的焦點(diǎn)為F,準(zhǔn)線lx軸的交點(diǎn)為A.點(diǎn)C在拋物線E上,以C為圓心,|CO|為半徑作圓,設(shè)圓C與準(zhǔn)線l交于不同的兩點(diǎn)M,N.

(1)若點(diǎn)C的縱坐標(biāo)為2,求|MN|;

(2)|AF|2|AM|·|AN|,求圓C的半徑.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(理)二輪專題復(fù)習(xí)知能提升演練1-6-1練習(xí)卷(解析版) 題型:解答題

已知直線lyxmmR.

(1)若以點(diǎn)M(2,0)為圓心的圓與直線l相切于點(diǎn)P,且點(diǎn)Py軸上,求該圓的方程;

(2)若直線l關(guān)于x軸對(duì)稱的直線為l,問直線l與拋物線Cx24y是否相切?說明理由.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(理)二輪專題復(fù)習(xí)知能提升演練1-6-1練習(xí)卷(解析版) 題型:選擇題

已知圓(xa)2(yb)2r2的圓心為拋物線y24x的焦點(diǎn),且與直線3x4y20相切,則該圓的方程為(  )

A(x1)2y2 Bx2(y1)2

C(x1)2y21 Dx2(y1)21

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(理)二輪專題復(fù)習(xí)知能提升演練1-5-2練習(xí)卷(解析版) 題型:解答題

如圖,AB是圓O的直徑,PA垂直圓O所在的平面,C是圓O上的點(diǎn).

(1)求證:BC平面PAC;

(2)設(shè)QPA的中點(diǎn),GAOC的重心,求證:QG平面PBC.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(理)二輪專題復(fù)習(xí)知能提升演練1-4-1練習(xí)卷(解析版) 題型:選擇題

在等差數(shù)列{an}中,a1a510,a47,則數(shù)列{an}的公差為(  )

A1 B2 C3 D4

 

查看答案和解析>>

同步練習(xí)冊答案