7、如圖所示,函數(shù)y=f(x)的圖象在點(diǎn)P處的切線方程是y=-x+8,則f(5)和f′(5)分別為( 。
分析:根據(jù)導(dǎo)數(shù)的幾何意義知,函數(shù)y=f(x)的圖象在點(diǎn)P處的切線的斜率就是函數(shù)y=f(x)在該點(diǎn)的導(dǎo)數(shù)值,因此可求得f′(5),再根據(jù)切點(diǎn)的雙重性,即切點(diǎn)既在曲線上又在切線上,可求得f(5).
解答:解:根據(jù)圖象知,函數(shù)y=f(x)的圖象與在點(diǎn)P處的切線交于點(diǎn)P,
f(5)=-5+8=3,
f′(5)為函數(shù)y=f(x)的圖象在點(diǎn)P處的切線的斜率,
∴f′(5)=-1;
故選A.
點(diǎn)評:此題是個基礎(chǔ)題.考查導(dǎo)數(shù)的幾何意義以及學(xué)生識圖能力的考查,命題形式新穎.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

12、如圖所示,函數(shù)y=f(x)的圖象在點(diǎn)P處的切線方程是y=-x+8,則f(5)=
3
,f′(5)=
-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

f′(x)是函數(shù)y=f(x)的導(dǎo)函數(shù),若y=f′(x)的圖象如圖所示則函數(shù)y=f(x)的圖象可能是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示,函數(shù)y=f(x)的圖象是圓心在點(diǎn)(1,
0
,半徑為1的兩段圓弧,則不等式f(x)<f(2-x)+x的解集是
(0,1)∪(
8
5
,2]
(0,1)∪(
8
5
,2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示為函數(shù)y=f(x)在區(qū)間上的圖象,則它的單調(diào)增區(qū)間是    .

查看答案和解析>>

同步練習(xí)冊答案