1.已知向量$\overrightarrow{a}$=(1,2),$\overrightarrow$=(-2,-4),|$\overrightarrow{c}$|=$\sqrt{5}$,若($\overrightarrow{c}$-$\overrightarrow$)•$\overrightarrow{a}$=$\frac{15}{2}$,則$\overrightarrow{a}$與$\overrightarrow{c}$的夾角為$\frac{2π}{3}$.

分析 求出$\overrightarrow{a}•\overrightarrow{c}$,再計(jì)算cos<$\overrightarrow{a},\overrightarrow{c}$>即可得出答案.

解答 解:∵($\overrightarrow{c}$-$\overrightarrow$)•$\overrightarrow{a}$=$\overrightarrow{a}•\overrightarrow{c}$-$\overrightarrow{a}•\overrightarrow$=$\frac{15}{2}$,$\overrightarrow{a}•\overrightarrow$=-2-8=-10,
∴$\overrightarrow{a}•\overrightarrow{c}$=$\frac{15}{2}$-10=-$\frac{5}{2}$,
∴cos<$\overrightarrow{a},\overrightarrow{c}$>=$\frac{\overrightarrow{a}•\overrightarrow{c}}{|\overrightarrow{a}||\overrightarrow{c}|}$=$\frac{-\frac{5}{2}}{\sqrt{5}×\sqrt{5}}$=-$\frac{1}{2}$,
由0≤<$\overrightarrow{a},\overrightarrow{c}$>≤π,
∴$\overrightarrow{a}$與$\overrightarrow{c}$的夾角為$\frac{2π}{3}$.
故答案為$\frac{2π}{3}$.

點(diǎn)評(píng) 本題考查了平面向量的數(shù)量積運(yùn)算,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.若復(fù)數(shù)(a2-l)+(a-1)i(i為虛數(shù)單位)是純虛數(shù),則實(shí)數(shù)a=(  )
A.±1B.-1C.0D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知遞增數(shù)列{an},a1=2,其前n項(xiàng)和為Sn,且滿足${a_n}^2+2=3({S_n}+{S_{n-1}})(n≥2)$.
(1)求a2的值;
(2)求數(shù)列{an}的通項(xiàng)公式;
(3)若數(shù)列{bn}滿足${log_2}\frac{b_n}{a_n}=n$,求其前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.在△ABC中,角A、B、C所對(duì)的邊分別為a,b,c,已知(2c-a)cosB=bcosA.
(1)求角B;
(2)若b=6,c=2a,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.設(shè)兩個(gè)非零向量$\vec a$與$\vec b$不共線.
(1)若$\overrightarrow{AB}=\vec a+\vec b,\overrightarrow{BC}=2\vec a+8\vec b,\overrightarrow{CD}=3({\vec a-\vec b})$,求證:A,B,D三點(diǎn)共線
(2)試確定實(shí)數(shù)k,使$k\vec a+\vec b$和$\vec a+k\vec b$反向共線.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.在數(shù)列{an}中,a1=$\frac{1}{2}$,an+1=$\frac{3{a}_{n}}{{a}_{n}+3}$,求a2、a3、a4的值,由此猜想數(shù)列{an}的通項(xiàng)公式,并證明你的猜想.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知橢圓:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{^{2}}=1$(a>b>0)的離心率為$\frac{\sqrt{2}}{2}$,圓x2+y2-2y=0的圓心與橢圓C的上頂點(diǎn)重合,點(diǎn)P的縱坐標(biāo)為$\frac{5}{3}$.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)若斜率為2的直線l與橢圓C交于A,B兩點(diǎn),探究:在橢圓C上是否存在一點(diǎn)Q,使得$\overrightarrow{PA}=\overrightarrow{BQ}$,若存在,求出點(diǎn)Q的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.已知函數(shù)f(x)是定義在R上的奇函數(shù),且當(dāng)x≤0時(shí),f(x)=-x2-3x,則f(2)=-2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知一圓的圓心坐標(biāo)為C(2,-1),且被直線l:x-y-1=0截得的弦長(zhǎng)為2$\sqrt{2}$,則此圓的方程(x-2)2+(y+1)2=4.

查看答案和解析>>

同步練習(xí)冊(cè)答案