【題目】已知函數(shù)f(x)=(x﹣2)ex+a(x﹣1)2 . (Ⅰ)討論f(x)的單調(diào)性;
(Ⅱ)若f(x)有兩個(gè)零點(diǎn),求a的取值范圍.

【答案】解:(Ⅰ)由f(x)=(x﹣2)ex+a(x﹣1)2 , 可得f′(x)=(x﹣1)ex+2a(x﹣1)=(x﹣1)(ex+2a),
①當(dāng)a≥0時(shí),由f′(x)>0,可得x>1;由f′(x)<0,可得x<1,
即有f(x)在(﹣∞,1)遞減;在(1,+∞)遞增;
②當(dāng)a<0時(shí),若a=﹣ ,則f′(x)≥0恒成立,即有f(x)在R上遞增;
若a<﹣ 時(shí),由f′(x)>0,可得x<1或x>ln(﹣2a);
由f′(x)<0,可得1<x<ln(﹣2a).
即有f(x)在(﹣∞,1),(ln(﹣2a),+∞)遞增;
在(1,ln(﹣2a))遞減;
若﹣ <a<0,由f′(x)>0,可得x<ln(﹣2a)或x>1;
由f′(x)<0,可得ln(﹣2a)<x<1.
即有f(x)在(﹣∞,ln(﹣2a)),(1,+∞)遞增;
在(ln(﹣2a),1)遞減;
(Ⅱ)
①由(Ⅰ)可得當(dāng)a>0時(shí),f(x)在(﹣∞,1)遞減;在(1,+∞)遞增,
且f(1)=﹣e<0,x→+∞,f(x)→+∞;x→﹣∞,f(x)→+∞.f(x)有兩個(gè)零點(diǎn);
②當(dāng)a=0時(shí),f(x)=(x﹣2)ex , 所以f(x)只有一個(gè)零點(diǎn)x=2;
③當(dāng)a<0時(shí),
若a<﹣ 時(shí),f(x)在(1,ln(﹣2a))遞減,在(﹣∞,1),(ln(﹣2a),+∞)遞增,
又當(dāng)x≤1時(shí),f(x)<0,所以f(x)不存在兩個(gè)零點(diǎn);
當(dāng)a≥﹣ 時(shí),f(x)在(1,+∞)單調(diào)遞增,又x≤1時(shí),f(x)<0,所以f(x)不存在兩個(gè)零點(diǎn).
綜上可得,f(x)有兩個(gè)零點(diǎn)時(shí),a的取值范圍為(0,+∞)
【解析】(Ⅰ)求出f(x)的導(dǎo)數(shù),討論當(dāng)a≥0時(shí),a<﹣ 時(shí),a=﹣ 時(shí),﹣ <a<0,由導(dǎo)數(shù)大于0,可得增區(qū)間;由導(dǎo)數(shù)小于0,可得減區(qū)間;(Ⅱ)由(Ⅰ)的單調(diào)區(qū)間,對(duì)a討論,結(jié)合單調(diào)性和函數(shù)值的變化特點(diǎn),即可得到所求范圍.
【考點(diǎn)精析】通過(guò)靈活運(yùn)用利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,掌握一般的,函數(shù)的單調(diào)性與其導(dǎo)數(shù)的正負(fù)有如下關(guān)系: 在某個(gè)區(qū)間內(nèi),(1)如果,那么函數(shù)在這個(gè)區(qū)間單調(diào)遞增;(2)如果,那么函數(shù)在這個(gè)區(qū)間單調(diào)遞減即可以解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在四棱錐P﹣ABCD中,底面ABCD是正方形,側(cè)棱PD⊥底面ABCD,PD=DC,點(diǎn)E是PC的中點(diǎn),作EF⊥PB交PB于點(diǎn)F.
(1)求證PA∥平面EDB;
(2)求二面角C﹣PB﹣D的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了得到函數(shù) 的圖象,只需將函數(shù)y=sin2x的圖象上每一點(diǎn)( )
A.向左平移 個(gè)單位長(zhǎng)度
B.向左平移 個(gè)單位長(zhǎng)度
C.向右平移 個(gè)單位長(zhǎng)度
D.向右平移 個(gè)單位長(zhǎng)度

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知四棱錐P﹣ABCD的底面是菱形,PA⊥面ABCD,PA=AD=2,∠ABC=60°,E為PD中點(diǎn).

(1)求證:PB∥平面ACE;
(2)求二面角E﹣AC﹣D的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知集合U={1,2,3,4,5,6},A={1,2,3,5},B={3,5,6}.
(Ⅰ)求A∩B;
(Ⅱ)求(UA)∪B.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知命題p:a∈R,且a>0,a+ ≥2,命題q:x0∈R,sinx0+cosx0= ,則下列判斷正確的是(
A.p是假命題
B.q是真命題
C.(¬q)是真命題
D.(¬p)∧q是真命題

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù) 有兩個(gè)零點(diǎn).
(1)若函數(shù)的兩個(gè)零點(diǎn)是 ,求 的值;
(2)若函數(shù)的兩個(gè)零點(diǎn)是 ,求 的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x),φ(x)滿足關(guān)系φ(x)=f(x)f(x+α)(其中α是常數(shù)).
(1)如果α=1,f(x)=2x﹣1,求函數(shù)φ(x)的值域;
(2)如果α= ,f(x)=sinx,且對(duì)任意x∈R,存在x1 , x2∈R,使得φ(x1)≤φ(x)≤φ(x2)恒成立,求|x1﹣x2|的最小值;
(3)如果f(x)=Asin(ωx+)(A>0,ω>0),求函數(shù)φ(x)的最小正周期(只需寫(xiě)出結(jié)論).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知?jiǎng)狱c(diǎn)P與兩定點(diǎn)A(﹣2,0),B(2,0)連線的斜率之積為﹣ . (Ⅰ)求動(dòng)點(diǎn)P的軌跡C的方程;
(Ⅱ)若過(guò)點(diǎn)F(﹣ ,0)的直線l與軌跡C交于M、N兩點(diǎn),且軌跡C上存在點(diǎn)E使得四邊形OMEN(O為坐標(biāo)原點(diǎn))為平行四邊形,求直線l的方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案