設(shè)凸n邊形(n≥4)的對(duì)角線條數(shù)為f(n),則f(n+1)-f(n)=
 
考點(diǎn):歸納推理
專題:推理和證明
分析:由n邊形到n+1邊形,增加的對(duì)角線是增加的一個(gè)頂點(diǎn)與原n-2個(gè)頂點(diǎn)連成的n-2條對(duì)角線,及原先的一條邊成了對(duì)角線.
解答: 解:由n邊形到n+1邊形,
凸n邊形變成凸n+1邊形,首先是增加一條邊和一個(gè)頂點(diǎn),
原先的一條邊就成了對(duì)角線了,則增加上的頂點(diǎn)連接n-2條對(duì)角線,
則n-2+1=n-1即為增加的對(duì)角線,
所以凸n+1邊形有對(duì)角線條數(shù)f(n+1)為凸n邊形的對(duì)角線加上增加的即f(n+1)-f(n)=n-1.
故答案n-1.
點(diǎn)評(píng):考查學(xué)生的邏輯推理的能力,對(duì)數(shù)列的概念及簡(jiǎn)單表示法的理解.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖所示,△ABC內(nèi)接于⊙O,AB=AC,直線XY切⊙O于點(diǎn)C,BD∥XY,AC、BD相交于E.
(1)求證:△ABE≌△ACD;
(2)若AB=6cm,BC=4cm,求AE的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

對(duì)于任意正整數(shù)n,猜想2n-1與(n+1)2的大小關(guān)系,并給出證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

不論a,b為何實(shí)數(shù),直線(2a+b)x+(a+b)y+a-b=0均通過(guò)一定點(diǎn),則此定點(diǎn)坐標(biāo)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

復(fù)數(shù)z=
a+3i
1-i
(i為虛數(shù)單位)是實(shí)數(shù),則實(shí)數(shù)a=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

從4名男生和2名女生中任選3人參加演講比賽,則所選3人中恰有1名女生的概率是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

一個(gè)多面體的三視圖如圖所示,其中正視圖是正方形,側(cè)視圖是等腰三角形.則該幾何體的俯視圖面積為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案
闂傚倸鍊搁崐鐑芥嚄閼哥數浠氬┑掳鍊楁慨瀵告崲濮椻偓閻涱喛绠涘☉娆愭闂佽法鍣﹂幏锟� 闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾捐鈹戦悩鍙夋悙缂佺媭鍨堕弻銊╂偆閸屾稑顏�