(2007•廣州一模)雙曲線的中心在坐標(biāo)原點(diǎn),離心率等于2,一個(gè)焦點(diǎn)的坐標(biāo)為(2,0),則此雙曲線的方程是
x2-
y2
3
=1
x2-
y2
3
=1
分析:設(shè)出雙曲線方程,利用離心率等于2,一個(gè)焦點(diǎn)的坐標(biāo)為(2,0),求出幾何量,即可得出方程.
解答:解:由題意,設(shè)雙曲線的方程為
x2
a2
-
y2
b2
=1

∵離心率等于2,一個(gè)焦點(diǎn)的坐標(biāo)為(2,0),
c=2
c
a
=2

∴a=1,b=
c2-a2
=3
∴雙曲線的方程是x2-
y2
3
=1

故答案為:x2-
y2
3
=1
點(diǎn)評(píng):本題考查雙曲線方程與性質(zhì),考查學(xué)生的計(jì)算能力,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2007•廣州一模)已知圓C:x2+y2-2x-2y+1=0,直線l:y=kx,且l與C相交于P、Q兩點(diǎn),點(diǎn)M(0,b),且MP⊥MQ.
(Ⅰ)當(dāng)b=1時(shí),求k的值;
(Ⅱ)當(dāng)b∈(1,
32
),求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2007•廣州一模)下列函數(shù)中,既是偶函數(shù)又在(0,+∞)上單調(diào)遞增的是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2007•廣州一模)如圖,已知曲線C1:y=x2與曲線C2:y=-x2+2ax(a>1)交于點(diǎn)O,A,直線x=t(0<t≤1)與曲線C1,C2分別相交于點(diǎn)D,B,連結(jié)OD,DA,AB,OB.
(1)寫出曲邊四邊形ABOD(陰影部分)的面積S與t的函數(shù)關(guān)系式S=f(t);
(2)求函數(shù)S=f(t)在區(qū)間(0,1]上的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2007•廣州一模)已知i是虛數(shù)單位,復(fù)數(shù)(1+i)2=( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2007•廣州一模)某市A、B、C三個(gè)區(qū)共有高中學(xué)生20000人,其中A區(qū)高中學(xué)生7000人,現(xiàn)采用分層抽樣的方法從這三個(gè)區(qū)所有高中學(xué)生中抽取一個(gè)容量為600人的樣本進(jìn)行學(xué)習(xí)興趣調(diào)查,則A區(qū)應(yīng)抽取( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案