【題目】在平面直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸的極坐標(biāo)系中,曲線的極坐標(biāo)方程為.
(1)若,求直線以及曲線的直角坐標(biāo)方程;
(2)若直線與曲線交于兩點(diǎn),且,求直線的斜率.
【答案】(1),(2)
【解析】
(1)根據(jù)的大小消去參數(shù),求得直線的直角坐標(biāo)方程,利用極坐標(biāo)和直角坐標(biāo)轉(zhuǎn)化公式,求得曲線的直角坐標(biāo)方程.(2)方法1:寫出直線的極坐標(biāo)方程,代入曲線的極坐標(biāo)方程,根據(jù)極坐標(biāo)系下的弦長(zhǎng)公式列方程由此求得直線的斜率.方法2:設(shè)出直線的直角坐標(biāo)方程,聯(lián)立直線的方程和曲線的直角坐標(biāo)方程,利用弦長(zhǎng)公式列方程,解方程求得直線斜率.
解:(1)由題意,直線,可得直線是過原點(diǎn)的直線,
故其直角坐標(biāo)方程為,
又,由
故;
(2)由題意,直線l的極坐標(biāo)為,
設(shè)、對(duì)應(yīng)的極徑分別為,
將代入曲線的極坐標(biāo)可得:
,
故,,
,
故,則,即,,
所以故直線的斜率是
法二:由題意,直線方程為,設(shè)、對(duì)應(yīng)的點(diǎn)坐標(biāo)為
聯(lián)立直線與曲線的方程,消去得.
所以,故直線的斜率是.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】
已知函數(shù),且。
(I)試用含的代數(shù)式表示;
(Ⅱ)求的單調(diào)區(qū)間;
(Ⅲ)令,設(shè)函數(shù)在處取得極值,記點(diǎn),證明:線段與曲線存在異于、的公共點(diǎn)。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn)在橢圓上,過點(diǎn)作軸于點(diǎn)
(1)求線段的中點(diǎn)的軌跡的方程
(2)設(shè)、兩點(diǎn)在(1)中軌跡上,點(diǎn),兩直線與的斜率之積為,且(1)中軌跡上存在點(diǎn)滿足,當(dāng)面積最小時(shí),求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C:(a>b>0),左、右焦點(diǎn)分別為F1(﹣1,0),F2(1,0),橢圓離心率為,過點(diǎn)P(4,0)的直線l與橢圓C相交于A、B兩點(diǎn)(A在B的左側(cè)).
(1)求橢圓C的方程;
(2)若B是AP的中點(diǎn),求直線l的方程;
(3)若B點(diǎn)關(guān)于x軸的對(duì)稱點(diǎn)是E,證明:直線AE與x軸相交于定點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】每年春晚都是萬眾矚目的時(shí)刻,這些節(jié)目體現(xiàn)的文化內(nèi)涵、歷史背景等反映了社會(huì)的進(jìn)步.國(guó)家的富強(qiáng),人民生活水平的提高等.某學(xué)校高三年級(jí)主任開學(xué)初為了解學(xué)生在看春晚后對(duì)節(jié)目體現(xiàn)的文化內(nèi)涵、歷史背景等是否會(huì)在今年的高考題中體現(xiàn)進(jìn)行過思考,特地隨機(jī)抽取100名高三學(xué)生(其中文科學(xué)生50,理科學(xué)生50名),進(jìn)行了調(diào)查.統(tǒng)計(jì)數(shù)據(jù)如表所示(不完整):
“思考過” | “沒有思考過” | 總計(jì) | |
文科學(xué)生 | 40 | 10 | |
理科學(xué)生 | 30 | ||
總計(jì) | 100 |
(1)補(bǔ)充完整所給表格,并根據(jù)表格數(shù)據(jù)計(jì)算是否有的把握認(rèn)為看春晚后會(huì)思考節(jié)目體現(xiàn)的文化內(nèi)涵、歷史背景等與文理科學(xué)生有關(guān);
(2)①現(xiàn)從上表的”思考過”的文理科學(xué)生中按分層抽樣選出7人.再從這7人中隨機(jī)抽取4人,記這4人中“文科學(xué)生”的人數(shù)為,試求的分布列與數(shù)學(xué)期望;
②現(xiàn)設(shè)計(jì)一份試卷(題目知識(shí)點(diǎn)來自春晚相關(guān)知識(shí)整合與變化),假設(shè)“思考過”的學(xué)生及格率為,“沒有思考過”的學(xué)生的及格率為.現(xiàn)從“思考過”與“沒有思考過”的學(xué)生中分別隨機(jī)抽取一名學(xué)生進(jìn)行測(cè)試,求兩人至少有一個(gè)及格的概率.
附參考公式:,其中.
參考數(shù)據(jù):
0.050 | 0.010 | 0.001 | |
3.841 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)在上有定義,實(shí)數(shù)和滿足,若在區(qū)間上不存在最小值,則稱在上具有性質(zhì).
(1)當(dāng),且在區(qū)間上具有性質(zhì)時(shí),求常數(shù)的取值范圍;
(2)已知(),且當(dāng)時(shí),,判別在區(qū)間上是否具有性質(zhì),試說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com