(09年朝陽區(qū)二模理)對于任意兩個正整數(shù),定義運算(用表示運算符號):當都是正偶數(shù)或都是正奇數(shù)時,;而當中一個為正偶數(shù),另一個為正奇數(shù)時,.例如,.在上述定義中,集合的元素有               個.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

(09年朝陽區(qū)二模理)(14分)

已知函數(shù)

(Ⅰ)求函數(shù)的最小值;

(Ⅱ)求證:;

(Ⅲ)對于函數(shù)定義域上的任意實數(shù),若存在常數(shù),使得都成立,則稱直線為函數(shù)的“分界線”.設函數(shù),,是否存在“分界線”?若存在,求出的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(09年朝陽區(qū)二模理)(13分)

在袋子中裝有10個大小相同的小球,其中黑球有3個,白球有,且個,其余的球為紅球.

(Ⅰ)若,從袋中任取1個球,記下顏色后放回,連續(xù)取三次,求三次取出的球中恰有2個紅球的概率;

(Ⅱ)從袋里任意取出2個球,如果這兩個球的顏色相同的概率是,求紅球的個數(shù);

(Ⅲ)在(Ⅱ)的條件下,從袋里任意取出2個球.若取出1個白球記1分,取出1個黑球記2分,取出1個紅球記3分.用ξ表示取出的2個球所得分數(shù)的和,寫出的分布列,并求的數(shù)學期望

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(09年朝陽區(qū)二模理)(14分)

如圖,四棱錐的底面是矩形,底面,邊的中點,與平面所成的角為,且.

(Ⅰ)求證:平面;

(Ⅱ)求點到平面的距離;

(Ⅲ)求二面角的大小.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(09年朝陽區(qū)二模理)(13分)

已知函數(shù)的最小正周期為.

   (Ⅰ)試求的值;

(Ⅱ) 在銳角中,a,b,c分別是角A,B,C的對邊.若

的面積,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(09年朝陽區(qū)二模理)已知兩點,點是圓上任意一點,則面積的最小值是                     (            )

A.8              B.6                 C.          D.4

查看答案和解析>>

同步練習冊答案