如圖所示,F(xiàn)1和F2分別是雙曲線的兩個(gè)焦點(diǎn),A和B是以O(shè)為圓心,|OF1|為半徑的圓與該雙曲線左支的兩個(gè)交點(diǎn),且△F2AB是等邊三角形,則離心率為( )
A. | B. | C. | D. |
C
解析試題分析:連接AF1,根據(jù)△F2AB是等邊三角形可知∠AF2B=60°,F(xiàn)1F2是圓的直徑可表示出|AF1|、|AF2|,再由雙曲線的定義可得c-c=2a,從而可求雙曲線的離心率.
連接AF1,則∠F1AF2=90°,∠AF2B=60°
∴|AF1|=c,|AF2|=c,∴c-c=2a,∴e==,故選C.
考點(diǎn):本題主要考查雙曲線的簡(jiǎn)單性質(zhì).考查了學(xué)生綜合分析問題和數(shù)形結(jié)合的思想的運(yùn)用.屬基礎(chǔ)題
點(diǎn)評(píng):解決該試題的關(guān)鍵是根據(jù)雙曲線的定義以及等邊三角形的性質(zhì)得到關(guān)于a,b,c的關(guān)系式,進(jìn)而得到其離心率的求解。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:單選題
橢圓上一點(diǎn)P到兩焦點(diǎn)的距離之積為m,則m取最大值時(shí)P點(diǎn)坐標(biāo)是( )
A.(0,3)或(0,-3) | B.或 |
C.(5,0)或(-5,0) | D.或 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:單選題
中心在原點(diǎn),焦點(diǎn)在y軸上,若長(zhǎng)軸長(zhǎng)為18,且兩個(gè)焦點(diǎn)恰好將長(zhǎng)軸三等分,則橢圓的方程是 ( )
A. | B. |
C. | D. |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:單選題
雙曲線的虛軸長(zhǎng)為4,離心率,、分別是它的左、右焦點(diǎn),若過的直線與雙曲線的左支交于A、B兩點(diǎn),且是與的等差中項(xiàng),則等于 ( )
A.8
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:單選題
設(shè)P是雙曲線與圓在第一象限的交點(diǎn),分別是雙曲線的左右焦點(diǎn),且則雙曲線的離心率為( )
A. | B. | C. | D. |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:單選題
設(shè)和為雙曲線 的兩個(gè)焦點(diǎn), 若,,是正三角形的三個(gè)頂點(diǎn),則雙曲線的離心率為 ( )
A. | B. | C. | D.3 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com