若a=log5(2π),b=log5
39
,c=log6
39
,則a、b、c之間的大小關(guān)系為
 
考點:對數(shù)函數(shù)、指數(shù)函數(shù)與冪函數(shù)的增長差異
專題:計算題,函數(shù)的性質(zhì)及應(yīng)用
分析:利用對數(shù)函數(shù)的單調(diào)性,即可得出結(jié)論.
解答:解:∵2π>
39
,
∴l(xiāng)og5(2π)>log5
39
,
∴a>b,
log
39
6
log
39
5>0,
∴l(xiāng)og6
39
<log5
39
,
∴b>c,
∴a>b>c,
故答案為:a>b>c.
點評:本題考查對數(shù)函數(shù)的單調(diào)性,考查學(xué)生的計算能力,比較基礎(chǔ).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=Atan(ωx+ϕ)(ω>0,|ϕ|<
π
2
),y=f(x)的部分圖象如圖所示,則f(
π
12
)
=( 。
A、3
B、
3
C、1
D、
3
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知正六邊形的半徑為6cm,求它的外接圓和內(nèi)切圓所圍成的圓環(huán)面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知⊙A1:(x+2)2+y2=12和點A2(2,0),則過點A2且與⊙A1相切的動圓圓心P的軌跡方程為(  )
A、
x2
3
-y2=1
B、
x2
3
+y2=1
C、x2-y2=2
D、
x2
12
+
y2
8
=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=
0,x=2n+1,n∈Z
1,x=2n,n∈Z
,畫出它的圖象并求f(f(-3))的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

自平面上一點O引兩條射線OA,OB,點P在OA上運勸,點Q在OB上運動且保持|
PQ
|
為定值a(點P,Q不與點O重合),已知∠AOB=60°,a=
7
,則
PQ
PO
|
PO
|
+
3
QP
QO
|
QO
|
的取值范圍為( 。
A、(
1
2
,
7
]
B、(
7
2
,
7
]
C、(-
1
2
,
7
]
D、(-
7
2
,7]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)的導(dǎo)函數(shù)f′(x)的圖象是如圖所示的一條直線l,l與x軸交點的坐標為(1,0),則f(0)和f(3)的大小關(guān)系為( 。
A、f(0)<f(3)
B、f(0)>f(3)
C、f(0)=f(3)
D、不能確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

用半徑為R的圓形鐵皮剪出一個圓心角為α的扇形,制成一個圓錐形容器,要使容器的容積最大,扇形的圓心角α=( 。
A、
3
B、
2
3
3
π
C、
6
3
π
D、
2
6
3
π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知cos(α-
π
6
)+sinα=
4
5
3
,則sin(α+
π
6
)的值是( 。
A、
4
5
B、-
4
5
C、
4
3
15
D、-
4
3
15

查看答案和解析>>

同步練習(xí)冊答案