精英家教網 > 高中數學 > 題目詳情

用數學歸納法證明:

【解析】首先證明當n=1時等式成立,再假設n=k時等式成立,得到等式

,

下面證明當n=k+1時等式左邊

根據前面的假設化簡即可得到結果,最后得到結論.

 

【答案】

證明:(1)當時,左邊,右邊左邊,∴等式成立.

(2)設當時,等式成立,

.  則當時,

左邊

 

時,等式成立.

由(1)、(2)可知,原等式對于任意成立.

 

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知a>0,b>0,n>1,n∈N*.用數學歸納法證明:
an+bn
2
≥(
a+b
2
)n

查看答案和解析>>

科目:高中數學 來源: 題型:

已知m,n為正整數.
(Ⅰ)用數學歸納法證明:當x>-1時,(1+x)m≥1+mx;
(Ⅱ)對于n≥6,已知(1-
1
n+3
)n
1
2
,求證(1-
m
n+3
)n<(
1
2
)m
,m=1,2…,n;
(Ⅲ)求出滿足等式3n+4n+5n+…+(n+2)n=(n+3)n的所有正整數n.

查看答案和解析>>

科目:高中數學 來源: 題型:

用數學歸納法證明貝努利(Bernoulli)不等式:如果x是實數,且x>-1,x≠0,n為大于1的自然數,那么有(1+x)n>1+nx.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知:函數f(x)=-
1
6
x3+
1
2
x2+x
,x∈R.
(Ⅰ)求證:函數f(x)的圖象關于點A(1,
4
3
)
中心對稱,并求f(-2007)+f(-2006)+…+f(0)+f(1)+…+f(2009)的值.
(Ⅱ)設g(x)=f′(x),an+1=g(an),n∈N+,且1<a1<2,求證:
(。┱堄脭祵W歸納法證明:當n≥2時,1<an
3
2
;
(ⅱ)|a1-
2
|+|a2-
2
|+…+|an-
2
|<2

查看答案和解析>>

科目:高中數學 來源: 題型:

用數學歸納法證明:(cosα+isinα)n=cosnα+isinnα,(其中i為虛數單位)

查看答案和解析>>

同步練習冊答案