2.計(jì)算sin150°+2cos240°+3tan315°后,所得結(jié)果的值為-3.5.

分析 原式各項(xiàng)角度變形后,利用誘導(dǎo)公式化簡,計(jì)算即可求出值.

解答 解:原式=sin(180°-30°)+2cos(180°+60°)+3tan(360°-45°)
=sin30°-2cos60°-3tan45°
=$\frac{1}{2}$-1-3
=-3.5,
故答案為:-3.5.

點(diǎn)評 此題考查了運(yùn)用誘導(dǎo)公式化簡求值,熟練掌握誘導(dǎo)公式是解本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知全集U=R,A={y|y=2x+1},B={x|lnx≥0},則A∩B=( 。
A.{x|x≥1}B.{x|x>1}C.{x|0<x<1}D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知平面上兩點(diǎn)A(-a,0),B(a,0)(a>0),若圓(x-3)2+(y-4)2=4上存在點(diǎn)P,使得∠APB=90°,則a的取值范圍是(  )
A.[3,6]B.[3,7]C.[4,6]D.[0,7]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知平行四邊形ABCD中,∠A=45°,且AB=BD=1,將△ABD沿BD折起,使得平面ABD⊥平面BCD,如圖所示:
(1)求證:AB⊥CD;
(2)求棱錐A-BCD的表面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知θ∈($\frac{3π}{4}$,$\frac{5π}{4}$),sin(θ-$\frac{π}{4}$)=$\frac{\sqrt{5}}{5}$.
(1)求sinθ的值;
(2)求cos(2θ+$\frac{π}{3}$)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.定義運(yùn)算$|\begin{array}{l}{a}&\\{c}&t5hv44k\end{array}|$=ad-bc,若函數(shù)f(x)=$|\begin{array}{l}{x-1}&{2}\\{-x}&{x+3}\end{array}|$在(-∞,m)上是單調(diào)減函數(shù),則實(shí)數(shù)m的最大值是-2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知空間向量$\vec a$=(1,n,2),$\vec b$=(-2,1,2),若2$\vec a$-$\vec b$與$\vec b$垂直,則|$\vec a$|等于( 。
A.$\frac{5\sqrt{3}}{2}$B.$\frac{3\sqrt{5}}{2}$C.$\frac{\sqrt{37}}{2}$D.$\frac{\sqrt{21}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.實(shí)數(shù)x,y滿足$\left\{{\begin{array}{l}{x≥1}\\{y≤a(a>1)}\\{x-y≤0}\end{array}}\right.$,若目標(biāo)函數(shù)z=2x-y的最小值為-4,則實(shí)數(shù)a的值為(  )
A.4B.5C.6D.7

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.在五棱錐P-ABCDE中,平面PAE⊥平面ABCDE,△PAE為等腰直角三角形,且∠APE=90°,AB=2,AC=$\sqrt{10}$,AE=2AB,BE=2$\sqrt{5}$,DE=3,∠ABC=135°,AB∥DE
(1)求證:平面PDE⊥平面PAE
(2)求二面角B-PC-D的余弦值.

查看答案和解析>>

同步練習(xí)冊答案