已知函數(shù).

1)當(dāng)時,求函數(shù)的單調(diào)遞增區(qū)間;

2)設(shè)的內(nèi)角的對應(yīng)邊分別為,且若向量與向量共線,求的值.

 

【答案】

1 ;(2)

【解析】

試題分析:(1)因?yàn)?/span>函數(shù)所以通過二倍角公式及三角函數(shù)的化一公式,將函數(shù)化簡,再通過正弦函數(shù)的單調(diào)遞增區(qū)間公式,將化簡得到變量代入相應(yīng)的x的位置即可求出函數(shù)的單調(diào)遞增區(qū)間,從而調(diào)整k的值即可得到結(jié)論.

(2)由(1)可得函數(shù)的解析式,再由即可求得角C的值.在根據(jù)向量共線即可求得一個等式,再根據(jù)正弦定理以及余弦定理,即可求得相應(yīng)的結(jié)論.

試題解析:(I)==

解得

,f(x)的遞增區(qū)間為

(2),

,所以,所以

因?yàn)橄蛄?/span>與向量共線,所以

由正弦定理得:    

由余弦定理得:,a2+b2ab=9、

由①②解得

考點(diǎn):1.二倍角公式.2.化一公式.3.三角函數(shù)的單調(diào)性.4.解三角形.

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)

(1)當(dāng)時,若,試求;

(2)若函數(shù)在區(qū)間上是增函數(shù),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年海南省高考壓軸卷文科數(shù)學(xué)試卷(解析版) 題型:解答題

(本小題滿分10分)選修4-5:不等式選講

已知函數(shù)

(1)當(dāng)時,求函數(shù)的定義域;

(2)若關(guān)于的不等式的解集是,求的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013屆河北省高二下學(xué)期期中文科數(shù)學(xué)試卷(解析版) 題型:解答題

(本小題12分)已知函數(shù)。

(1)當(dāng)時,判斷的單調(diào)性;

(2)若在其定義域內(nèi)為增函數(shù),求正實(shí)數(shù)的取值范圍;

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年上海市寶山區(qū)高三上學(xué)期期末質(zhì)量監(jiān)測數(shù)學(xué) 題型:解答題

已知函數(shù)

    (1)當(dāng)時,求滿足的取值范圍;

    (2)若的定義域?yàn)镽,又是奇函數(shù),求的解析式,判斷其在R上的單調(diào)性并加以證明.

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年深圳市高三第一次調(diào)研考試數(shù)學(xué)理卷 題型:解答題

((本小題滿分14分)

已知函數(shù)

(1)當(dāng)時,如果函數(shù)僅有一個零點(diǎn),求實(shí)數(shù)的取值范圍;

(2)當(dāng)時,試比較的大小;

(3)求證:).

 

查看答案和解析>>

同步練習(xí)冊答案