【題目】光伏發(fā)電是利用太陽(yáng)能電池及相關(guān)設(shè)備將太陽(yáng)光能直接轉(zhuǎn)化為電能.近幾年在國(guó)內(nèi)出臺(tái)的光伏發(fā)電補(bǔ)貼政策的引導(dǎo)下,某地光伏發(fā)電裝機(jī)量急劇上漲,如下表:

某位同學(xué)分別用兩種模型:①進(jìn)行擬合,得到相應(yīng)的回歸方程并進(jìn)行殘差分析,殘差圖如下(注:殘差等于):

經(jīng)過(guò)計(jì)算得,

(1)根據(jù)殘差圖,比較模型①,②的擬合效果,應(yīng)該選擇哪個(gè)模型?并簡(jiǎn)要說(shuō)明理由.

(2)根據(jù)(1)的判斷結(jié)果及表中數(shù)據(jù)建立y關(guān)于x的回歸方程,并預(yù)測(cè)該地區(qū)2020年新增光伏裝機(jī)量是多少.(在計(jì)算回歸系數(shù)時(shí)精確到0.01)

附:歸直線的斜率和截距的最小二乘估計(jì)公式分別為:,

【答案】(1)選擇模型①;(2),19.16(兆瓦)

【解析】

1)根據(jù)殘差圖判斷出估計(jì)值和真實(shí)值比較接近的模型,得到答案.

2)根據(jù)(1)得到回歸方程,然后根據(jù)表中數(shù)據(jù)計(jì)算出回歸方程中各參數(shù)的值,得到回歸方程.

1)選擇模型①.

理由如下:根據(jù)殘差圖可以看出,模型①的估計(jì)值和真實(shí)值比較相近,模型②的殘差值相對(duì)較大一些,所以模型①的擬合效果相對(duì)較好.

(2)由(1)可知,關(guān)于的回歸方程為,令,則.

由所給數(shù)據(jù)可得.

所以關(guān)于的回歸方程為

預(yù)測(cè)該地區(qū)2020年新增光伏裝機(jī)量為(兆瓦).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線的焦點(diǎn)為F,準(zhǔn)線為l,過(guò)F的直線與E交于AB兩點(diǎn),C,D分別為A,Bl上的射影,且,MAB中點(diǎn),則下列結(jié)論正確的是(

A.B.為等腰直角三角形

C.直線AB的斜率為D.的面積為4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某城市交通部門為了對(duì)該城市共享單車加強(qiáng)監(jiān)管,隨機(jī)選取了100人就該城市共享單車的推行情況進(jìn)行問(wèn)卷調(diào)查,并將問(wèn)卷中的這100人根據(jù)其滿意度評(píng)分值(百分制)按照,,,,分成5組,制成如圖所示頻率分直方圖.

1)求圖中的值及這組數(shù)據(jù)的眾數(shù);

2)已知滿意度評(píng)分值在內(nèi)的男生數(shù)與女生數(shù)的比為,若在滿意度評(píng)分值為的人中隨機(jī)抽取2人進(jìn)行座談,求2人均為男生的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)是圓上的任意一點(diǎn),是過(guò)點(diǎn)且與軸垂直的直線,是直線軸的交點(diǎn),點(diǎn)在直線上,且滿足.當(dāng)點(diǎn)在圓上運(yùn)動(dòng)時(shí),記點(diǎn)的軌跡為曲線.

(1)求曲線的方程;

(2)已知點(diǎn),過(guò)的直線交曲線兩點(diǎn),交直線于點(diǎn).判定直線的斜率是否依次構(gòu)成等差數(shù)列?并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)數(shù)列是等差數(shù)列,數(shù)列是各項(xiàng)都為正數(shù)的等比數(shù)列,且.

1)求數(shù)列,的通項(xiàng)公式;

2)設(shè),,,試比較的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在如圖所示的六面體中,四邊形是邊長(zhǎng)為的正方形,四邊形是梯形,,平面平面,,.

1)在圖中作出平面 與平面的交線,并寫出作圖步驟,但不要求證明;

2)求證:平面

3)求平面與平面所成角的余弦值

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),的導(dǎo)函數(shù).

1)若,求的值;

2)討論的單調(diào)性;

3)若恰有一個(gè)零點(diǎn),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,曲線上的動(dòng)點(diǎn)到點(diǎn)的距離減去到直線的距離等于1.

(1)求曲線的方程;

(2)若直線 與曲線交于,兩點(diǎn),求證:直線與直線的傾斜角互補(bǔ).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】隨著移動(dòng)互聯(lián)網(wǎng)的發(fā)展,與餐飲美食相關(guān)的手機(jī)軟件層出不窮.為調(diào)查某款訂餐軟件的商家的服務(wù)情況,統(tǒng)計(jì)了10次訂餐“送達(dá)時(shí)間”,得到莖葉圖如下:(時(shí)間:分鐘)

(1)請(qǐng)計(jì)算“送達(dá)時(shí)間”的平均數(shù)與方差:

(2)根據(jù)莖葉圖填寫下表:

送達(dá)時(shí)間

35分組以內(nèi)(包括35分鐘)

超過(guò)35分鐘

頻數(shù)

A

B

頻率

C

D

在答題卡上寫出,,的值;

(3)在(2)的情況下,以頻率代替概率.現(xiàn)有3個(gè)客戶應(yīng)用此軟件訂餐,求出在35分鐘以內(nèi)(包括35分鐘)收到餐品的人數(shù)的分布列,并求出數(shù)學(xué)期望.

查看答案和解析>>

同步練習(xí)冊(cè)答案