函數(shù)f(x)=2x+x3-2在區(qū)間(0,2)內(nèi)的零點(diǎn)個(gè)數(shù)是( 。
A、0B、1C、2D、3
考點(diǎn):函數(shù)零點(diǎn)的判定定理
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:令f(x)=0,即2x=2-x3,令g(x)=2x,h(x)=2-x3,畫(huà)出這兩個(gè)函數(shù)的圖象,一目了然,問(wèn)題得解.
解答: 解:令f(x)=0,
∴2x=2-x3,
令g(x)=2x,h(x)=2-x3,
如圖示:

∴函數(shù)g(x)和函數(shù)h(x)有一個(gè)交點(diǎn),
∴函數(shù)f(x)=2x+x3-2在區(qū)間(0,2)內(nèi)的零點(diǎn)個(gè)數(shù)是1個(gè),
故選:B.
點(diǎn)評(píng):本題考察了函數(shù)的零點(diǎn)問(wèn)題,滲透了轉(zhuǎn)化思想,數(shù)形結(jié)合思想,是一道基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(x)=lg(x+1)+lg(x-1)的定義域是( 。
A、(1,+∞)
B、(-1,+∞)
C、(-∞,-1)∪(1,+∞)
D、(-1,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列說(shuō)法錯(cuò)誤的是( 。
A、若“p且q”為假命題,則p、q至少有一個(gè)為假命題
B、若
a
=
0
,則“
a
b
=
a
c
”是“
b
=
c
”的充要條件
C、命題“若x2-3x+2=0,則x=1”的逆否命題為:“x≠1,則x2-3x+2≠0”
D、命題p:“?x∈R,使得x2+x+1<0”,則¬p:“?x∈R,均有x2+x+1≥0”

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列不等式對(duì)任意的x∈(0,+∞)恒成立的是( 。
A、sinx>-x+1
B、x-x2>0
C、x>ln(1+x)
D、e2>ex

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)集合A={x|-3≤x≤0},B={x|-1≤x≤3},則A∩B=(  )
A、[-1,0]
B、[-3,3]
C、[0,3]
D、[-3,-1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知命題p:?x0∈(0,
π
2
),sinx0=
1
2
,則非p為( 。
A、?x∈(0,
π
2
),sinx≠
1
2
B、?x∈(0,
π
2
),sinx=
1
2
C、?x0∈(0,
π
2
),sinx0
1
2
D、?x0∈(0,
π
2
),sinx0
1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知x∈[0,2π],如果y=cosx是減函數(shù),且y=sinx是增函數(shù),那么( 。
A、0≤x≤
π
2
B、
π
2
≤x≤π
C、π≤x≤
2
D、
2
≤x≤2π

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=|x-a|+|x-2|+a.
(1)當(dāng)a=2時(shí),求f(x)>4的解集;
(2)若關(guān)于x的不等式f(x)-|x-4|<0在x∈(1,2)上恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=4sinωxcos(ωx+
π
3
)(ω>0)的最小正周期是π.
(1)求f(x)的解析式;
(2)求函數(shù)f(x)的對(duì)稱中心和對(duì)稱軸.

查看答案和解析>>

同步練習(xí)冊(cè)答案