設(shè)函數(shù).
(1)求函數(shù)的單調(diào)區(qū)間;
(2)當(dāng)時(shí),是否存在整數(shù),使不等式恒成立?若存在,求整數(shù)的值;若不存在,請(qǐng)說明理由;
(3)關(guān)于的方程在上恰有兩個(gè)相異實(shí)根,求實(shí)數(shù)的取值范圍.
(1)函數(shù)的遞增區(qū)間是;減區(qū)間是;
(2)存在整數(shù),且當(dāng)時(shí),不等式在區(qū)間上恒成立;
(3)實(shí)數(shù)的取值范圍是.
【解析】
試題分析:(1)先求出函數(shù)的定義域,然后求出導(dǎo)數(shù),利用導(dǎo)數(shù)求出函數(shù)的增區(qū)間與減區(qū)間;(2)利用參數(shù)分離法將問題轉(zhuǎn)化為與在區(qū)間上同時(shí)恒成立,求出的取值范圍,最終確定整數(shù)的值;(3)構(gòu)造新函數(shù),并利用導(dǎo)數(shù)確定函數(shù)在區(qū)間上的單調(diào)性,利用極值與端點(diǎn)值的將問題“關(guān)于的方程在上恰有兩個(gè)相異實(shí)根”進(jìn)行等價(jià)轉(zhuǎn)化,列出有關(guān)參數(shù)的不等式組,從而求出參數(shù)的取值范圍.
試題解析:(1)由得函數(shù)的定義域?yàn)?img src="http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/2013122809154645041244/SYS201312280918274989580881_DA.files/image020.png">,
。 2分
由得由
函數(shù)的遞增區(qū)間是;減區(qū)間是; 4分
(2)由(1)知,在上遞減,在上遞增;
5分
又且
時(shí), 7分
不等式恒成立,
即
是整數(shù),
存在整數(shù),使不等式恒成立 9分
(3)由得
令則
由
在[0,1]上單調(diào)遞減,在[1,2]上單調(diào)遞增 10分
方程在[0,2]上恰有兩個(gè)相異實(shí)根
函數(shù)在和上各有一個(gè)零點(diǎn),
實(shí)數(shù)m的取值范圍是 14分
考點(diǎn):1.函數(shù)的單調(diào)區(qū)間;2.函數(shù)不等式恒成立;3.函數(shù)的零點(diǎn)
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
px+1 |
x+1 |
1 |
2 |
n |
cn |
-1 |
anSn2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
2 |
x |
2 |
x |
2 |
π |
8 |
π |
2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
1 | an |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年山東省青島市高三3月統(tǒng)一質(zhì)量檢測(cè)考試(第二套)理科數(shù)學(xué)試卷(解析版) 題型:解答題
已知函數(shù).
(1)求的最小值;
(2)當(dāng)函數(shù)自變量的取值區(qū)間與對(duì)應(yīng)函數(shù)值的取值區(qū)間相同時(shí),這樣的區(qū)間稱為函數(shù)的保值區(qū)間.設(shè),試問函數(shù)在上是否存在保值區(qū)間?若存在,請(qǐng)求出一個(gè)保值區(qū)間;若不存在,請(qǐng)說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com